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I. Background: Review of Basic Concepts

This final report illustrates the results of a three-years research

program on Quantum Chaos. When our program was started this subject
was still in a native stage, dominated by the pioneering work of a
restricted number of scientists. By now, instead, it has grown into a
most active field of research, and keeps drawing increasing attention by

scientists working in widely different areas, ranging from pure
theoretical to experimental ones. International conferences and
workshops on Quantum Chaos have been held, and others are being
announced, witnessing the liveliness and the interest of the topic.

Curiously enough, despite this great development the very definition

of Quantum Chaos is still a controversial point. A very neutral statement
is that quantum chaos is concerned with the properties of quantum

systems that are chaotic in the classical limit. In order to get a more
precise formulation of the problems involved and to give a clear

exposition of our contributions, we shall first review some basic
concepts and keywords.

1.1 Classical Chaos.

Chaos is today a protagonist in all problems that can be treated by
classical mechanics. The appearance of chaos is c-onnected with an
extreme type of instability that often appears in nonlinear classical

systems. Chaotic systerns are in many senses the very opposite of
integrable systems. The orbilts in phase spa3ce 1i: one integrable system

are bound to smooth surfaces whose dimension equals the number of
freedoms, called inv3riant tori. For this reason, inte.rable systems are

. .A



ver :-table; a sm iall erroilr in ;peilf'!rl the inital data involves art error

in predicting the state at a later tune that grows linearly with time. so
that finite-precision algorithms allow for a reliable computation of
orbits. Integrable systems are well known, being the sole class of
nonlinear systems that are amenable to analytical solution.

Generic Hamiltonian systems can be regarded as perturbatians of
integrable systems - i.e., their Hamiltonian is obtained by adding some
correction to an integrable Hamiltonian. It is now known that in this
case some orbits are still confined (and densely fill) on some invariant
surfaces that can be looked upon as distorted remnants of the supply of
invariant tori that is available in the unperturbed case. The celebrated

KAM theorem characterizes this surviving set of 'regular' orbits, that
becomes narrower as the perturbation strength-or just the energy, in the
conservative case-increases.

Chaos became a keyword in classical mechanics when the behaviour of
the other orbits - i.e., those that are no longer confined to smooth
"tori"-was studied in some detail. Indeed, it turned out that these orbits
are usually exponentially unstable - i.e.. errors in the initial data
propagates exponentially in time. This makes hopeless the prediction of
individual orbits by finite precision algorithms. If the state of the
system moving along a typical chaotic orbit is recorded with a finite
precision at a prescribed sequence of instants, one gets a string of data
that is indistinguishable from a random string - i.e., from a string of
numbers generated by a random device. Analysis of single orbits is
therefore meaningless; instead, the behaviour of ensembles of orbits
turns out to be describable, in statistical terms, and it is found that the
ensemble evolution is, in a suitable approximation, a diffusion process.
Whereas regular orbits lie on invariant tori and are therefore confined

forever to a negligible region of phase space chaotic orbits have a
tendency to explore the whole available phase space in _ diffusive waq.
Bourds on this pervasive behaviour are however posed ty tne survlval of

some ton, that can substantially slow down or even stop the diffusion.

1.2 Model -y--.ter" - EiI ard-.and the kicked Rotator

The onset of chaos in Harmltonlan systems i--n most c31e3

unambiquucily detected by nunericl simulation, but the trporeti,: l

_. a a, -. . . & . . . . . . . ...



4

analysis of this process is still far from being complete. For this
reason, in order to understand at least the qualitative features of
chaotic dynamics it has proved very useful to consider simplified
models. Not being modelled after any actual phenomenological situation,
they are abstract constructions; yet, they exhibit the essential features

of chaos, bare of complications that are usually superimposed in
realistic cases. A first example is provided by billiards, i.e., particles
bouncing elastically inside suitable plane regions. Rigorous mathematical
results have shown that, if the boundary of the billiard is suitably

shaped, then the simple Hamiltonian system so defined displays strongly
chaotic properties. Unlike generic Hamiltonian systems in which both
Chaotic and regular orbits coexist, the latter becoming negligible only by
suitably increasing the energy, billiards are fully chaotic - i.e., regular
orbits have zero measure - at any energy.

As we shall emphasize later, the most impressive phenomenological
manifestations of chaos are offered by Hamiltonian systems subject to
external perturbations periodic in time. Within this class, one model
system dominates the scene: the S-kicked rotator, also called standard,
or Chirikov's map, by more mathematically oriented authors. This is the
i-dim. Hamiltonian system described by the time-dependent Hamil'onian

H= P 2/2 + kcos e 2 S(t- nT); o< <2f

n

Physically, it is a pendulum whose weight is 'turned up' in an impulsive,

S-like way, at regularly operated instants of time. It can obviously be
looked upon, as a perturbation of a free rotator (k=O) and indeed, the
whole scenery of KAM theory is here realized. The object of interest
here is the discrete-time orbit p(nT), 8(nT), which, in the unperturbed

case is generically bound and densely fills a regular curve. As k is
increased, the set of 'regular' orbits shrinks and, for kT> 1. almost all

orbits become chaotic. A remarkable indication of the stochatic nature

of the motion in this case is offered by the behaviour of the kinetic
energy T(nT)= (P2 (nT)/2> averaged over the phase 3; this grows in a
diffusive way - Dn with D _ (kT)2/2.



I.- PheroenoIoic al FRelevance of Classical C haos

The appearance of irregular orbits may dramatically change the
pnenomenological behaviour of a given system. Indeed, a major impulse
to the study of chaotic dynamics was given by the necessity of
predicting the precise conditions under which dangerous instabilities

develop in physical situations that are amenable to a classical

description, such as, e.g., beams of accelerated particles or confined
plasmas. A vivid illustration of the effect of chaos on real physics is
provided by the very problem that was the most important part of the

research described here : an hydrogen atom in an external microwave
field. Deferring a detailed analysis to a later section, we shall give
here a qualitative explanation why chaos is essential in the classical

behaviour of such an atom. The unperturbed atom is obviously an
integrable system. As soon as the external perturbation is turned on (the

microwave field), some of the orbits become irregular and start
wandering away. For not too large perturbation strength, residual
invariant tori persist that prevent this diffusion from leaving the 'bound'

state subspace of the whole phase space. However, for any given initial

(bound) state of the atom, a value of the external field will be found, for
which the orbit leaving from this st ',e will no longer meet any such

impediment and will therefore diffuse away until the atom ionizes. This

simple picture leads to predict that for atoms prepared in a fixed initial

state under a field of fixed frequency there is a threshold in the field
strength, across which the ionization rate changes abruptly due to the
unset of unbounded diffusion.

1.4 Quantum Limitations to Classical Chaos in Conservative Systems.

Level Statistics.

Why should a quantum physicist care about classical chaos? In the

Ilight of the above sketched picture of the microwave orizaticn of
hydrogen atoms, this question has at least one immediate answer

because just the fallure of certain classical predictions about the
hldrolgen atoms was one starting pl-tnt in the e,,i fTcat io- of quantun

mechanics. Nevertheless. on account of the correspondence principle, one

can predict that by going up to sufficiently high quantum numbers
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quantur and classical predictions will agree. It was however apparent
since tile beginning of studies on chaotic dynamics that the
correspondence between a quantum system and its classical limit may
have some subtle aspect when the latter is chaotic. For example, a
chaotic conservative classical system with a bounded configuration
space (such as a billiard) display a highly non-recurrent behaviour: by

this we mean that, even though it comes infinitely often arbitrarily
close to its initial state (Poincare recurrence), nevertheless there is no
upper bound on the return times, that will take arbitrarily large values

as the system moves along a given orbit. The quantum analog of any such
system will have a pure point energy spectrum; the quantum evolution
will then be quasi-periodic, hence recurrent. On the other hand, the
correspondence principle requires that the recurrent quantum behaviour
goes into the highly non recurrent classical one as h -> 0!

An obvious way out to this apparent contradiction is that recurrence
(or non-recurrence) is a long-time property, and the classical limit hn->o
can be non uniform in time. In other words, for a given quantum state
which is quasi-classical one can expect at best that quantum dynamics
looks like the classical over just a finite time scale tff) so that

r(i)->oo as tI->o. One has then a sort of chaos confined to a bounded
time scale, so that "Transient Chaos" or "Pseudochaos" appear more

appropriate expressions.
Despite this severe limitation placed by quantum mechanics on

classical chaos in the conservative case - the nonconservative case will
be discussed below - there are still reasons why quantized conservative

chaotic systems should be made the object of a careful investigation.
Integrable systems played a central role in the early stages of quantum
mechanics. Indeed, the Bohr-Sommerfeld quantization procedure is only

applicable to integrable systems.
Instead, the present-day form of quantum mechanics does no longer

suffer from such a limitation, and we can safely quantize any
conservative Hamiltonian system, regardless of its integrable or chaotic

nature. Nevertheless, semiclassical quanti zation rules still play an
important role, in that they are often the only reasonable way to get
quantitative informations about the higher part of the energy spectrum.
These rules are today rigorously deduced from tih S,:hroelringer equation

in the form of the EWBK rules. Again, this theory works only under the
explicit assumption that the system at hand has an integrable classical



linlt, A iltural probln 1iis then wrether seric Iassircal rrethods ca r tca ,

u':.ed also in the non-integrable case in order to get infromation about
the semiclassical part of the spectrum.

It was suggested by Berry I] that the integrable or non-integrable
character of classical dynamics is mirrored by the statistical type of
the corresponding energy spectra. Given a spectrum whatsoever, one can

define the associated level spacing distribution function P(s,E) as
follows. Given a "'-0, one takes only those eigenvalues En(ti) that lie

between E-A and E+A and forms the string sn of the spacings En+i - En,

measured in units o their average value. These numbers sn will be

distributed according to an hystogram N(s,h,E) giving, for any s the
relative frequency of occurence, within the string, of spacings between s
and S+ds. Letting then i->o, N(s,thE) would tend to a limit P(s,E).

On account of nurnerical computations and analytical arguments, it is
currently assumed that, if the system has an integrable classical limit,

P(s,E) is given by the Poisson distribution e-s. Instead, if the system has
a chaotic classical limit, P(s) should be the same as the Wigner
distribution valid for eigenvalues of random matrices in the Gaussian
orthogonal ensemble, that is given almost exactly by

F's) : (1 /2)S exp(-Tls2/4)

The most obvious difference between these two forms of P(s) is that,

in the latter, one has level repulsion - i.e., the frequency of small
spacings is vanishingli smoall.

1.5 (Quarturn Chaos for Periodically Perturbed HamilItonian 5'ystems.

In the section 4 anbove 3, re3son was pointed out, wh4 the long -time

behaViour of quanrturn and classica3l onservative siyst errs ir the presence
of chaos cannot be e:.pec ted to be the same. However, the physic:.ally
rrost interesting cases 1u:h as the H-atom of sec. .3. do not belonq to
this'  class, because their H.i 1f tonian i' Pen odi: in t ille.

In that ri" ,e. quanturn dnarri l - i r I :nr.r i"l hI 1 tIi4 ar) energ11y

spe: trurr tilit i-1tpi r ty O ij h gu.i -enernjy ti.e sp r r .'tni I the
C oiser vatiye .asa' the enerqu spectrurn was i novh to be pure point, there

AOL



IS now io reason to expect that the q.e. spec trur Mhoul d tie pure poi nt in
all cases: the question of persistence of chaos or of some of its effects
in quantum mechanics in this nonconservative case must then tie started
atresh.

The first results were obtained by Casati et al. 14] who subjected the
quantum version of the 6 kicked rotor sketched in sec. 1.2 to a numerical
analysis,with the following remarkable results. It will be recalled that
the character of the classical motion is defined by the quantity KzkT. In
the quantum case, the dynarnics depends on two paramceters kq=kfi-i and

Tq:Tt. If Tq is a rational multiple of 4nf (Tq= 4 m/n , n, n integers) the

quantum rotor behaves resonantly, and its average kinetic energy
E(t)=<Y(t)I- (t 2/12)d 2 /de 2 1'(t)> increases with tire accordinq to an
asymptotically t2 law. This resonance has no classical analog and is not
therefore related to classical chaos. Therefore, the search for quantum
chaos must resort to irrational values of (4n )-TT The response of

computer experiments was that E(t) follows the classical diffusive law
E(t)t only up to some time t , after which it enters a steady

oscillatory state. In other words, according to numerical experiments
one has a _uantum suppression of chaotic diffusion.

1.6 Relevance of Classical Analisys to the Problem of Microwave
Ionization

The other nonconservative system discussed in this report - the
H-atom in a microwave field - had never been sublected to quantum
analisys, neither theoretical nor computational, up to the start of our
program. Nevertheless, it presented a unique occasion to rhe,.k the
picssible survival of chaotic effects in qu.aitu-nechanic ;, hoc a._';e

laboratory experiments or mi crowave ionization for hiqlI4j ex i ted

H-atoms had b'een performrled I() ice 1774 b14 Biayf I d and o r1K,, [ 12 wh o

succeeded in exposing a relevant ionization for low fields .nd

T requeri: i es well bet ow the I -photoi t hrePc.hl . No sat i .actor i quanTun

i.3r1 iE-. w.i~ . available IIF c thi ,  p en rl1ien in. Altei- tIP iI ci .l r

[ '.2K'l the idea took Place, that quartt tat i.'e predictior- in aqreecent
+ith experiments-, mig11ht te provideld bil ',:1 si:1a theory; Ilied, ,



-.::pel irrit .ar-led j'.t in p.aral lel wsitlh ,_l.--s ,+ ,al -,-+ S .ave anr

uvmrll .,tisfactory response. According to Such results. quarntum
rnechanics does indeed foilow ciassical mechanics so cioseiu, .3 '
rpro'iuce even chaotic ettects.

2. :3tatement of Problems

The rapid overview of the state of the art we gave in the previous

.ection should have put in evidence that current problerns in Quantum
.haos belong to two main areas: those involving tne spectral properties
of conservative systems and those investigating the dynamics of

externalI y perturbed systems.
In this report we shall present a number of contributions we have

given to both fields.

-. I The conservative case

'iur starting point here was Berry's hypothesis, that the statistics oi

energy levels should be essentially different in the integrable and in the
Chaotic case. Numerical work by Bohigas and other authors [11] supports

the generally accepted conclusion, that the level statistics for a
quantum systern which is chaotic In the classical limit is well described

by random matrix theory: in particular. under the assumption of time
reversai invariance one can assume that fluctuation properties in the
spectrurn will oey the same statistics as in the case o1 random
matrices in the so called ,Gauss+ian Orthogonal ensemble. This contention
was tested. by analyzing -lt order" -:tatstis- i.e.. st3ti-tilcal

propertics involving pair correlations between different levels, such a3s
the spacing distribution P(s', and also higher order statistics, involving
rnultiple correlations, such as the 6-3 statistics to te defined later.
Therefore. chaotic system's display a remar:ible universality in their
:pectral :.tati ti'c.

I. there ,.*314 Iijr'vei-.l I't l.tic, t r the inte ratle _rase'" Earlj -e-ult.

sUggested al alfirm.ati'.'e ansver: Indeed, :erry gave an argjurent



,.cr or i rq to which 'qIrerc' Inteqrabl e .-q.sterns have a Poisson

distribution of spacings. On the grounds of this argument it has been
conjectured that the fluctuation properties of the 'integrable' spectrum
should ne the same as for a Poisson process. According to this
conjecture, the energy levels of an integrable system, despite their
predictability by more or less simple semiclassical rules, should make
up a completely random sequence!

Even though this conjecture was supported by numerical results
insofar as the level spacing distribution was involved, there was neither
theoretical nor numerical evidence that also higher order statistics

should be Poisson-like. Therefore, we posed the following problem:
to analyze nigher order statistical properties - in particular, the 6-3
statistics - of the sequence of energy levels of an integrable system, in
order to check whether Poisson statistics is still obeyed.

2.2 The Time Dependent Case

Our current understanding of the interaction between matter and
radiation is provided by quantum mecnanics, the development o which
was indeed prompted by the incapability of classical mechanics to
account for the response of microsystems to radiation fields. In simple
cases, a sufficient approximation for the behaviour of an atom or a
molecule to an external electromagnetic field can be obtained by
considering the latter as a classical field; in these cases, the quantum
dynamics is described by a time dependent Schroedinger equation.

When the intensity of the fields is sufficiently small, this can be
handled by time-dependent perturbation theory, that leads to describe
the interaction with radiation in terms of multiphoton processes.
However, the present state of physical reseirch often confronts us with
situaItions in which it is important to predict toe response of atoms or
molecules to intense fields; moreover, experimental results indicate that

the dtjnamics in such cases may be qualitativeiy very different than one
would guess on the grounds of perturbatively based intuitions. A typical
example is E:ayfreld and lich's experirnen t , which exposed strong
ionization in a situation in wiI -l "li) plioton; wiould De requlrell.

Ii the absence of a method whatsoever. by which the 5'-hroedinqer

I U.. ... ... . a a



tq 0i n a.j ( e at lea st pprox1m.teIq :.ol',ed for the l.rge I ,J? d.
required. tile best one can do ini order to get some theoretical indication
is just coming back to classical mechanics, and indeed in physically
relevant cases such as microwave Ionization oi hydrogen atom in an
external field shows that a chaotic threshold exist. For field strength
exceeding this threshold, a qualitative change in the dynamics occurs,
that leads to intense ionization due to a diffusive-like motion of the
electron in the external field. Numerical simulation of the class!cal
rnodel is easily feasible, and a partial comparison of numerical data
gotten in this way with results of experiments on real atoms has shown
a certain degree of agreement. This fact seems to indicate that in a
semiclassical regime, the predictions or classical cnaotic dynamics are
essentially respected by quantum dynamics. Shall we conclude that
classical chaos in time-dependent problems is basically surviving
quantization? Certainly not; and the reason is that we know of at least
one quantum system - the S-kicked rotator - in which the fully
developed chaos; of the classical model is completely suppressed. What
ire then the reasons why quantum mechanics reacts so differently to
classical chaos in these two cases? Answering this question is an
os .-ential task, because Me existence or a quantum regime lying beyond

the perturbative regime in which the motion has some 'diffusive'
features would open a new field of immense potential interest. We
threfore need some theory that may be able to set precise quantitative
conditions for the applicability of semiclassical approximations when
the classical motion is chaotic. The following program should then be
fulfilled:
I) To build a simple model for a H atom in a microwave field, that is

•amenable to both classical and quantum solution by computer simulation
') to compare the classical and quantum motion in different pararneter
regions. r3rlging ir:rrm extreme semIcl ssc .31 to pure quanturn ones in

ncrder to as;es- the modrfic ations irmposed by quantum mnechanics on the

class.ical chaoitic behaviour
7) to identifq under what conditions these modifications take the form
of j complete suppression of c-lassical chaotic effects.

a
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7. 3emiclassical Theory of Electron Excitation.

3.1. Classical Dynamics o Electron Excitation

In this section we will develop the classical theory of the
excitation of an hydrogen atom in a linearly polarized monochromatic
electric field.

Here and in the following we will use atomic units. in which the

Hamiltoman takes the form:

H= P212 - I !r + sz cosot ia)

where E and (o are the field strength and frequency respectively and
the z-coordinate is measured along the direction of the external field.
The classical dynamics associated with (la) is conveniently studied in
parabolic coordinates since the unperturbed dynamics is separable in
these coordinates. Accordingly, action-angle variables ( nl, n-, m, xj,

,&,') can be introduced /30/, in which the Hamiltonian takes the form:

H= - I1/2n2 + Ez ( n1, n2 , m, X,, X2 ) cos wt ;

(I b)
nni + n Im I.

Owing to axial symmetry, m (which is the z-component of the
angular momentum) is an integral of the motion; therefore, (1)
describes an essentially 2-dimensional model.

The function z (n,, n,, m, . A2) can tie expanded in a double Fourier
series in the angle variables Xi, X2:

(I,, A, ,klk2
Z= > (ni, n,, n) e i(0 K C)

The coefficeuts z ,i can be round as sho-Wn Inl AppedidiX 1. a nd re

given by/161/:

A -
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)/ for kzO

,n (n, )/ for k = 0

Here A Jre Bessel functions of the first kind and Jk their derivates.

The dependence of z k .k on n1, n2, m is embodied in the parameters

1J1. pi2, which are delined2 biy

According to standard semiclassical approxination theory 2,8
2 klk.. give serniclassical values of dipole matrix elements for

transitions ni.- - -' = fi,a + kl, 2 . The element z1,0 , which is Just
tie average ol z over the unperturbed torus laelleil ty ni , n2 . m.

yields the standard quantum mechanical expression for the linear Stark
effect.

If the electron is initially in an "almost one-dimensional" state, i.e.,

in a state with n>> n%, n1 m, then in (la-le) we can assume ul=l.

0 u. In that case, the dynamics will be described in first

approximation by the one-dlmensional Hamiltonian

H - 1/2 n2 + En
2 

cos [.o 3/ -t "1 c. '

wrhich is jus-t the Hamiltonian. in action-anle variables, for- an
electron moving along the positive z axis I 7,20i:

H = p-."2 - 1/z oE C't

We start our aaria;isis with this simplified Hamiltonian (2'. Later in

- -



14

iis; EectUiln we shaill IisCuss the validit4 of this orie-dirnie: ional

jpprox:imation. i.e. we Thal discuss to what extent the one-dinmensional
hamiltonan (2) is adequate in order to describe the evolution o quasi

one-dimensional initial states under the full Hamiltonian (1).

Under appropriate conditions, the classical system described by the
Hamiltonian (2) undergoes a transition to chaotic dynamics. By this we
mean that a deep change occurs in the nature of orbits, which, above a

certain perturbation strength, become extremely sensitive and
complicated and wander erratically in phase space. This irregular
motion, if described in the unperturbed actions space, has a diffusive

character and leads to last ionization. Quantitative conditions for the
onset of chaotic dynamics can be obtained by mean of the resonance
overlapping criterion /17,20/. The starting point of this analysis is
realizing that the external field will more effectively perturb the
undisturbed motion at first order resonances, i.e., at values n of the
unperturbed actions such that the external frequency w resonates with

some harmonic of the unperturbed electron motion. These values of n
are such that s2- (n) = w with s an integer and (n) the angular
frequency (Kepler frequency) of the unperturbed motion:

S(n) dHo/dn = 11n3

First order resonances are then given by n. (s'-i)" 3 . However,

despite the the fact that for these values n. the perturbation is very

effective, as soon as it manages to drive the motion away from one

unperturbed resonant orbit its effect becomes weaker, and nonlinear
stabilization may occur. In that case, the motion keeps in a
neighborhood (a "resonance region") of the original unperturbed orbit.

However, if the perturbation is sufticientlI stron4, the mrtlion can

be driven so far awau fron the oriqinal reson rt v.Ilue n the . -tiOn,

that it can fall under the influence of another nearb.j resonance. There.
the same process may repeat, so that the orbit rm,y wander in a.t3ion

s;pace In a dliI uSive V134.

A quantitative es:.t1mate of the perturb3tion i c trenq th :hich

neltessary in order that this mnai happen is qotten hi4 e..alautin'q the
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wIith f the v.ri-u, le.-.oriai I-e relior 1 : 3 ll then t14 requll -ril that
nearby regions overlap / 17/.

rhe analysis just outlined can be applied to model k2): it is then

found that for w,o =i nn 1 ( where no is the initial value of the
action) and for field strength exceeding a critical value E

to= en > , 1/ 50 e o i/) ()

all resonance regions corresponding to n,, no do overlap. Then an orbit

leaving with action no in a region of phase space where both woo > I
and (3) are satisfied will diffuse indefinitely and eventually lonlze.

Notice that in (3) we have introduced rescaled values E1)- en0
4 for

Tield and e -.)o= ,:ino- tor irequency. The usefulness Or this ;Cal ln is due
to the fact that classical dynamics depends on r,o only via these
variables since, as can be readily checked, changing the initil no by
some factor will change the solution n(t) at any later time by the
same factor. provided o and ' 0 are kept constant, and time Is
measured in periods of the field (see also /15/).

We emphas;ze that estimate (3) is 'alid only for wo>I. Indeed for

i, i.e. in that phase space region where J) is smailer than the
l'epler frequency, there are no first-order resonant values of n, and

the motion is therefore more stable. A transition to chaotic behaviour
can still occur/l?,20/ due to the finite width of the resonance region
associated vith w., 2 I but, in order to compute the -cr in this region,

also higher-order resonances s- = peas , p >1 Iust be taken into
,.,;ount. It i. then found thit the rritical field irease. with

1 r asinq: ,'11; ho e".i, f:ri very l':'w ,, static fleid inilzatior-i c':urs

Of course, higher order resonances play a role in the chaotic
ti~lai.i tl .ia fn11 cr "i I arid, inileed, an appro:Kimate actourit cif them

al'I +re.ady~ tan eii in ' : ,' via 11w- *:hnoii: e ci+ tIn.T rnuneri:;.31 rat TClri 7, ' .

1 , pi L' 9I :.m''lurtd Oidei I Ialy S'."I C"; lead:. to but a coallI
111 1 i Ii t n i ll ilini 1 .Jl I l-t 0 .

J'4
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Ini the chaotic regime. -- E r 1 1 the process of diffusive

excitation is conveniently described in statistical terms. Indeed, an

equation of the Fokker-Planck type can be derived /17/:

.'Vat - 112 a/an (D af/an) (4:

where I (n. t) is the distribution function and z is the dimensionless
time, measured as the number of periods r=,lt12n of the external
field. The diffusion coefficient D in quasi-linear approximation i.,

glivern by

[: d ('n2>/dz --o n3/(o ''  no) : E E2 n3/ 7/3

('4) ard (5) were al'.O 1lerived in /20/)

Since D increases with n according to a power law, it is possible to
find an exact solution of (4). In order to do this, we must take notice

that the stochastic diffusion ruled by (4) can take place only in that

part of phase space where the chaotic transition has occurred. Going

down to lower and lower action values, one will eventually meet an
invariant curve which has not been destroyed; we must thereiore look

for a solution of (4) satisfying tre boundary conoitior tf/dn In f- 0 of

zero flux across the boundary n=n-of the region of stability. In order to

do that. the change of variables y : n/no, F- 2 rE.(oo-713 Is
convenient. Then, as shown in app. I, for f,/y<< I and letting y-=n/no,
the solution assumes a suificiently simple form:

f(Y,4 ,)Y t-exp[-( I+/V"y2/y I)2/ F I

v pf-( /'j- )./ 'F I2UI" 4 .,,(nT) (Sa)

,"T li, wumrical c oef fi ent I in n5 c orresponds to the frequency

r 3n e I .... .. . F i , , the %4 pt rt:tl vI v lue or this Icoefficient
I.1 Jte uised, which I-, rpar (ti
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\A_+ I Lie seen In -, tlonl ti+ i. nrrui . :rn[are E itf the

re'-ults of( numerical integration of the equtir o 1 f motion 'vIth
remarkable success.

The possibility of using this statistical description will play an
important role in our subsequent analysis of the Ionization process..
Indeed, due to the rapid growth with n of the diffusion coefficient,
stochastic orbits diffuse so fast towards high values of n that in
practice we can assume that they actually ionize- i.e. n becornes
infinite- in a finite time. A rough estimate of the ionization time
adequate Tor our present purposes can be gotten from eq. (5):

n '/D "-  ,,' (6)

In later sections we'll use expression (6) in order to roughly estimate
the diffusive ionization rate P1  1

In the remainder of this section we diSCtuSS the ','aldi1ti41 of the
one-dimensional approximation (2). Let's consider first the case when
n, ::n-, n 1 >:m and therefore p2<1. Then, since -- . P2lk l for

large 1k j, the main cotributicri to the variation of n will be given
by terms in (lc.d) with k =l. (Notice that z. rmve semiclassical

matrx elements for transitions with An, = ±k. The fast de,:reaise of
these matrix elements with small u 2 when k, i- large was already
remarked in /31/).

For E('>rr - the phase X1 begins to vary chaotically. and tMis leads.

to a diffusive chane in ni also. The diffu.ion i ate for n.. In
mu. si-1llnea. r appro:ximation can be derived, as shov..'n in iI 7/. by
ret31niln in l (Ic.) only terms with i. -:.± I. 'One finds tha:

n nr D(nz + j mI )/n2  (7)

This estimate shows that nver the on :ation t inrle ',n) tre c:1nnqe in
A.: + n. " (i -i + In ' r p p r-. ti- ,e r n.all. T ni at

irdl:ate. thait the inset of ioha t It , hmsr'wsn t Ie.-d to qnI grlIcant
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violatiors ot the ore-dirnensioinal approxirriation.

Along similar lines, we can show that a suitable one-dimensional

approximation is valid also in cases when n - Iml-n. Indeed from

(ie) it follows that, in such cases also, U2<<I. Then, upon neglecting

i, in (lc,d) we obtain the one-dimensional dynamics for the variable
n, = n - I mj , described by the Hamiltonian

H= -1/2n 2 +E n cos wt [3(n- Iml)/2

-2un 7, J'k(o-k) k-i cos k X1] (6)

with Pi Z' (I- ml/n)1 t 2. We can now apply to this one-dimensional
dynamics the resonance analysis, just as was done for (2). From the
asymptotic properties of Jk'(kpi) for k -> co /32/ it follows that

high-k harmonics in (8) become exponentially small as soon as k is so
nigh that (3/k) 3 < in/n . This means that the resonances of the field
with such high harmonics ( which take place when ao=k with (3/k ) 13

< m/n ), cannot significantly contribute in the chaotization process.

Therefore, when wo -1 the transition to chaotic motion is possible

only form.7 mr, with

rn n( .(.,,3/./ for uo>> I. (9)

For w - I we may take mcr ;. no. At this point we might start

afresh the analysis for the Hamiltonian (8) in order to determine the

critical field and the diffusion rate under condition (9). However a
comparison of (8) with (2) suggests that the results of this analysis

-Shouldn't leviate more than a factor 2 from formul s (4) and (5).

Aqain, the ':'e-dimensional approximation (8) is not significantlIA
violated over the ionization time; this can be seer at once, because the
diffusion rate for n-, is still given by (7). so that an estimate for the
variation An. similar to the previously established one for (2) holds

tor the present ca.e.

Further details on the classical l'rm iami cs cf excitation fcr the

L AL
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mo/del (2 ) w&-ill be given in Sec. 32. wlhere wMe shall also d-I.cuss the

results of nunerical simulation of this model.

3.2. Theory of Quantum Localization

The main result of the classical analysis carried out in the previous

Iec,:tion was that for sufficiently strong field the classical model (2)

exhibits a transition to chaotic motion. After this. the classical
distribution f(n, 7) spreads diffusively in action space, and ionization

takes. place in a finite time.

We will now tackle the basic question, of what modifications would

be imposed on this picture by quantum mechanics. In particular, we
wil study the behaviour of the quantum probability distribution over

the Unperturbed levels, which is the quantum analog of f(n, t).

Previous studies on periodically perturbed quantum systems that

become chaotic in the 'l sms iiit - in particular, on the kicked
rotator model - brought into the light the localization phenomenon as a

twpical occurrence. The quasi-energy spectrum is typically a pure point

one, and quantum effects lead to a limitation of the classical diffusion

and to exponential localization of the probability distribution around

the initially excited level no ; which means that in the average, and

apart from fluctuations (that may even be rather big ones) the
distribution looks like:

Sexp 21n-n

Here f in s the time-averaged population on the unperturbed level

rn-responding to a value n of the quantized 3ction, and I is the

lo a1zition length.

In the l ht of thee-. previous ilinings, it is, natural to assume that

• 3 siml.rF pi-tUre apl e ". also in the presenlt ca-.e. pecil-:all', YYe

3,II as ue that even in the -.emlcla-scal reqilor, and when the

rl.3;nSial t S I .ischaotic, a rnechari-mrrl cf quantll urn lIritation cit the



dhaot idiffusion is wcIrlt ri, 'ird ti.t, under .. i tatle condi tions, this
mechanism will produce a situation analogous to the rotator case.

Under such conditions, the part of the q.e. spectrum relevant to our
analysis will be quasi-discrete; the small line breadth of its levels
will be negligeable on a time scale short in comparison with the very
lonq one associated with multi-photonic ionization. While it remains
true that the quantum atom described by (2) will eventually ionize, no
matter how small E, nevertheless on the time scale involved by actual
experiments the localization phenomenon discussed here will give it a
remarkable stability in contrast with the properties of chaotic motion.
The obvious premise that localization in hydrogen atom is related to a

finite time scale, should not be forgotten throughout this paper.This

assumption will be fully supported by the results of our numerical
experiments.

Under such assumptions, we shall presently determine the

localization length by the simple method described in /3/. In this way,
we will be able also to determine the quantitative conditions under
which the localization picture actually applies. To this end, let us
start with the case of homogeneous classical diffusion, that is, we

overlook the variation of D with n.

In the semiclassical regime, the evolution of a quantum state
initially coinciding with one unperturbed eigenstate no will initially

follow to some extent the classical development of f(n,r). Therefore,
over the time scale in which this semiclassical approximation holds.
the spread of the wave packet over the unperturbed eigenstates will
grow in time according to An(vM-Dt)' / 2.

However, the discrete character of the quasi-energy spectrum
will prevent this diffusive growth from going on indefinitely, as it

would in the c lassical case. The time r[) after- which the discreteness

of the quasi-energy spectrum will become manifest can be estimated

by t [-, where N is the number of q.e. eigenstates significantly

excited byj the oriqginal unperturbed eiqenstate: indeed 2n/N iS just

the average spacing of q.e. eigenvalues significantly contributing to

the packet evolution. Then, the number of unperturbed levels excited b'

, , Jt



.1 h 1,. et ailer r e tI rn 1 - a n . T I

rh3t ,-Mel unperturbed level contain. N -.. n c, 0 .) . levels arnd that,

.-'e- vre_!. one q.e. elgenstate 'ontais" s n ry, unperturtikw

levels. The latter number, however, is the maximum spread attainable
by the wave-packet, I.e., it coincides with the localization lenqth 1.
Therelore we qet an equation lor _n

.r[ vo:,Sn(.c1, . <": c ,;Dt )i.'2 T:,,-

w',here we have introduced an undetermined numerical fator tor , to be
fourld L14 ruLericl .)l peririents /10/. For the ritator model, it was
round 1 t I. The same choice for x in the hy4drogeri atom rase would
yel d

1 P (nO) -  ~ 11ll

where (in0 ) is given by (5): Dfno)z ieoznn3  .

However this result was obtaired under the tssurrtiothat

D[:onst., whirh IS justified only in that region where 1<<n0 . Instead,

for I n , the dependerce :'f ) on n rn4y -Cubstantial1 modi fy the

localization picture, and, if the field strength exceeds some critical
value, it may even turn out that localization is not possible at all. ( A
;irmilar 'delocalization" phenornenon was investigated and explained on

.j simple ex.ample in Refs. /3.10/).

In order to clarity how delocalization occurs, we need to mo'lfiU the
above method for determining 1 , in such a way that the dependence of
D Oiln ti IS e:'pll:itl_. tal-en into account.Therefore, In pla:e of I cI
,.W , r we rmust substitute the delpendence of m, on that

eni crc eP ii1 the Foer-Pl an I' equati on (4). In this a ' we f n.di, as a
result ,,f the calculations developed in Appendix III, that Ari f.
'II' 'C i t.I:



Ey tih s.ame0 argurrgment as above, we' ( an now Iri rD and I iro'i tie

loc1hz3tion condit on i D) .i Hov.; ever, it , i, larqe enough, the

curve An(r) will never intersect the straight line ucz before exploding
at t = (uoU 3 /3Eo 2 

. When this happens, no localization is possible and
this implies unbounded diffusion for the electron. More specifically, in
App. III we show that the solution of An(c o) -C (Zs gives the

localization length I in the form:

I W: / - t ) u /3 (13)

where u is the least of the two solutions of the equation (')

3C- 2k0 -7/6 noI1 2 E0 )4 = g(u) E u( I -u)2 /(2-u) ,14)

such that o<u<l. Numerical data indicate that here too, ike in the
rotator case, wt I is to be chosen ( see e. g. fig. 10 and related

comments in sec. 3). Therefore, since the function g(u) in the interval
(0,I), has a maximum 1 1/12 at u = (3-/5)12, it follows that for

.~i '1 Q 7 16 /Y,, (6n0) (15)
t n > E q 0

eq. (14) has no solution.

Thus Eq(1)defines the threshold for quantum delocalizaton. Of

course, in order that delocalization may occur, it is also necessary

that EO exceeds the threshold for classical chaos (3), just because
the semiclassical estimate (12) holds under the assumption that
chaotic diffusilon takes place in the classical system. Accor-drni to) the
Irgument just outlined. across the threishold ,)a qua itat i.e chaie

' Tire -lhight dif ference irn nurmerrial cc'efi': rentv beteen v 13) . an
the 3nalogus iormula OT re., ,1 I , is due tc te , t th. t in J .

', te i (. sonrevin., le.-..er - It i 'Mn '. :, trrlt I ] t In-.0,



11, d the 1ccalization picture is no l'rqer 1ustitied. Sc .hould
lhen e:xpect that above this threshold here is no quantum limitation to
the classical diffusion and, indeed, this will clearly appear from
numerical results.

The above one-dimensional analysis can now be modified, so as to
apply also in the 2-dim case for quasi-l-dim. states. Indeed, even
though we know from Sec. 2.1 that the 1-dim. approximation is not

violated for suc:h states, still we cannot a prwilo-i exclude that the
presence of an additional degree of freedom can destroy the
localization of these quasi, but not strictly, I-dim, states. However,
we can answer this question by the same method used in the I-dlm,
case. Indeed since classical diffusion will now take place both for ni
and n , the nurber of unperturbed levels excited at time c will be

N r A n, (r) A n'(.)

For An,(-z) we will now take eq. (12); moreover, since An-(t) can be
assumed to lie small ,see sec. 2.1) , we 'will take An2(z) (D

wiith K-, as in formula (7). Imposing now the delocalization condition
N - z /3/b/10/11/16/21/ one easily get the estimate for the
two-dimensional delocalization threshold:

E : (Z - ., (007(6/(no [n2 (n2  I ml)1112 iU2 (16

where again an undetermined numerical factor 1 was introduced.*

The estimate (16 ) clearly indicates that 2-dimensionality sharply

decreases the delocalization threshold. Nonetheless, for states with m
.. -. I the 2-dim. threshold is almost the same as the 1-din. one.

t Ar tua3ll - rnore refined anal.ISiS shows that in the 2 -1i1m. case here
,.onsider-ed one has localization on an evxponentiallil 1a-i-qe scale ( ee

ref. 47 and eq. (4.4) of ref. 6. su that ,lelorali zation tal es place only'
slightliy aifive (16).
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We are therefore justif ied in assuming that for such quasi- I -dir.
states, the localization-delocalization picture remains vaid.

The decrease of the delocalization threshold in the 2-dim. model
yields one reason (another one will be given in Sec.3.3 ) why some
agreement was found between experiments on excitation of H atoms
from states with n- 66 with field frequency w/2ni 10 GHz /12/ and

the results of numerical simulation of this process on the clssical
model 115/26/. Indeed, in numerical experiments the initial
distribution of states with n=66 was nearly micro'anonical, so that
the above discussed 2-dim effects played an essential role in lowering
the delocalization threshold.

In closing this section, a couple of remarks concerning the validity
of the quantum system described by the Hamiltonian (2) as a
physically realistic model are in order. In the first place, in the
quantum theory discussed above we considered the electric field as
classical. This approximation holds if the full number N of field quanta
inside the microwave cavity of volume V

N 2 /(4Tflj.o) -I 'EC0
2 /(n 0 %0 )

is sufficiently large. For istance, for Eo :.05, wo =I, no -I0),
V=Icm 3, which are typical for the range explored in our investigations.
we get N- 1011.

Also the question may be raised whether the ditfusive excitation
process, that is made possible by the delocalization phenomenon,
should not be significantly reduced by the spontaneous radi Vion
process. However, the rate r,. of the latter pro': es; i; riu:h less thai

the dIfU1sicir rate FID Inldeed even Tor orbitalI quantum niumber I- 1 the

rate F.. -(1:3 n,*, 3 1- -' Ji i7 . .Estir inatig r(, tug the i ierse ,:

the classical iorization time i.e., b4 j itiL i,. witi c] a0, in ( e, .

ob t ain:



wnere the numerical estimate is given Tor tle ti4pica.l values (or1,

io:.05; notice also that the ratio does not depend on no.Actually, this
ratio is even smaller because the extended state contains I up to /no
>>1.

3.3. Ionization in the Presence of Locallzation

According to the theory developed in the previous section, as long
as the one-dimensional approximation is valid, the dependence of
ionization on the field strength should have a more or less marked
threshold character, delined by the quantum delocalizati:n border (15).
However, a microcanonical distribution of initial states looks fairly
typical in many physical situations, so that it is interesting to
investigate what should be in that case the dependence of ionization
probability on the field intensity. Indeed, since the two-dim.
localization border (16) depends on both quanturn nurrbiers n1 , n2, in

that case we should expect that for any ( not too "high") field. a
fraction of the states, depending on the field strength, will be
delocalized, while others will be localized and will therefore give no
contribution to the ionization rate.

We will derive this dependence, under the assumption that the

interaction time t-int of the atom with the field is large enough for

the classical system to undergo complete ionization i.e., that the
classical ionization probability Prl-=I. Besides that, however, Tint

must not be so large that direct quantum ionization from the
,tationarj distribution (10) into the continuous spectrum be,: omes
effectiwe(see the comments in sec. 2.2).

Let's first assume that we have initially a homogeneous distribution
of states with a fixed value of n(, and of the magnet!c quantumn number
rn. Then, after the tire .int. all atomns initialli in states with

ci:> G12(nrn) will be ionized.These are precisely te atoms initiall

in state. with n, > n-r v,,'th nrr glven by the equation r0 t=.2C
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(.*cr,rr). Then, recalling that rirl+n r,- Irn , we see that the fraction
of atoms in the ensemble which will not be ionized at time tint is

equal to 2n.zcr /(n o -Iml) (the factor 2 is due to symmetry for
exchanges n1  n2). Computing n2cr from eq. (16), we get:

n cr = [(m2 +no0 AZ) '/2 - I ml]/2 ?)
The ionization probability is therefore given by:

P1= I - 2n2zr/(no- ImI)

= I -f [m,.nJoA4 t -I m jOI/n o-I mf

where

A= 2wo?(36o- 2nO 2 . (16)

Now let's assume that the initial distribution is microcanonical,
i.e., that all quantum states with a fixed no are equally represented in
it. The full number of such states is n0

2 . For any given value of m.
the number of non-ionized states at time in, for the given co is just

n2 cr (m,E0 ). We must then sum over the different values of m; in doing
this, however, we must remember that there is a classical value r c r

above which there is no ionization (9). Replacing the sum by an
integral, we find that the fraction of non-ionized atoms at time tint

for the given Eo is given by:

I - P1  (4/no2) f n2 r (M, E(%) dm

The factor 4 in the above formula is due to symmetry with respect
to exchanges m -m, n, n2 . The latter symmetry must be taken
into account also in inserting the appropriate expression for n ' in the

integrard. Inde,-d, r-cr canmont e'.,ceed (n0- I m I )V2; otherwi-se, sonce the
argument is syrmetric in nI . n-., a3 superCritical value of ol: would

enforce a subcritical value of nrno- I mf-n,. Therefore, ncr in the
above integral is actually the intmum between (1?) and (no- Iml )12..
i.e., it is given by (17) for Irn <mf =rov'( 1 - while, for rn>in it is

equal to (n- In, I)V2.

IAL
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hen. assurni nq ill n0  Nil no hih. as .e have already remarked. i-,

legitiriate for . 1), and evaluating the integral, we finally get the

dependence of P1 on the field E0 in the following form:

P = 4( 1- A 2) - A' In{ [I+V(1-A 2 )]/A2 1 (19)

where A is given by eq. (16).

Unfortunately, it would not be correct to use available experimental
data a!; a check of (19), for the following reasons.

In the first place, whereas experimental data concern the frequency
region mo-cI, the above described theory of localization was derived
in the frequency region i)o>I. where Ist order resonances exist (the

peculiarities of the excitation process for wo0 -ci will be discussed in

sec. .3.2).

Second, according to numerical data /15/, in experiments the
condition P1 -=1 was not fulfilled after time 'nt ; indeed, by

increasing int a further increase of PIci was gotten. This fact

makes impossible the comprarison of available experimental data with
(:1 9).

3.4. Comparison of Diffusive and One-Photon Ionization

In the delocalization region 6 O>Eq the quantum mechanism of

suppression of classical diffusion is not at work and therefore one
expects that the quantum electron vil diffuse and ionize like the
classical one. This fact has been numerically checked and will be
discussed in se -tion 3. The resulting diffusive excitation can hardly be

described within the framework of conventional multiphoton theory;
moreover, it usually takes place in a very different range of

frequencies than considered there. In order to app rec:iate the
el ectiveness ot this ,,,new, iiiZitiomir process. t is interesting to

comnare it with tie farm liar oe- photon process.

AL AL I . . I m I I
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To obtair a qu ariti tative estirr ate fOr or e-photorn Ionization, we
shall first observe that any normalized energy eigenfunction for the
unperturbed one-dimensional hydrogen atom (i.e. for the Harmiltonian
(2) with Er0) can be written as u(z) = z R(z), where R(z) is a radial
eigenfunction for the 3-dim. atom with orbital quantur number 1=0.
Therefore, the matrix element for the photoelectric transition from

the n-th unperturbed level of the 1-dim. model (2) to the continuum
state having energy P2/2 = -1/2n 2 + w is given by

= z z3 RD(z) RO (z) (20)

where Rno, Rpo are radial eigenfunctions for the 3-dirnensional atom

with orbital quantum number -0 ( We assume Rpoto be normalized on

the energy scale).

For highly excited states n->1 the integral (20) can be evaluated by
semiclassical methods. In Ref. /33/ the following semiclassical value
ol dipole matrix elements for transitions from states (n,l) to (p, 1±1)
was found for l<-n, pccl (notice the difference in normnalization
between (20) and ref./33/):

R n,I = - i]2 [K2/ 31lo/ 3 ) ± K1.,3 (W 1/3)j /(3Zn-.n 32 )

where Kv () are Mac: Donald functions. Considering that the 2nd term

in square brackets is negligible for small I, and that for , -> 0,

K,/. (,) -- 0.459(3-)'3 '( -/2Y", we find the following semiclassical

value for (20):

t"'P° rl,,,) "-Z RP',, O-; 0.459 2 2;'3 (-0 n -3'2 w-5/" n

Then the tra.nsiti cn probability for unit tiroe is:

1 :( n/2) 1;2 1 RPx ' "r'I 0.265 C/(6 "  r,, (21)

ra11 Mne ion1iza+tIor pi-oi.hliy in one perioo at the external T ield is.



for n,- ri2). This vali c t~I ' I rniPS 'a)rger t ha3 n r f re. I) P7 tu I'-
averaling oiver- solid anigle.

In order to compare the I-photon Ionization and tWe dliifusive
Ionization we snil(oose the optimral reglime nT each processc. Then
for 1-photon ioniZation we take F',2i )- o thatxr7 4 < ri 3.

Insteaa, t, iffusive Iorizatiori 'we tale I. .3 andI weI
estimate the ionization probability per period as i z(with t a';

in , (): Y ~ 2.

III this W-ji4 we see that d~fii siyIp cni Ozat i cm, w1hich ta~i:e plac e fccjr a
much lower frequency thain I - photon wi cizat ion. i-, a much moreP
Rifective process than the la3tter:

In real physic~al timea this, ratio chngesq?-- as each Y is, rultiplied (14

ts own optimal3 t requei qwh-i':fi gives,:

C) / lt I1"'1(1 .

This ratio is still large for n,>>- I.

A detailed anls;of the dependlence oft the ioniza3tion probability
on frequency -will be discussed in sec. 7.4



I"W. l'r t ii'r t"4 I 'iririelu .ini1f 1 1 I eliJ 4-pI p r I ri .

we snalJ now di-scus. some peculiarities ot the excitation ailo
ionization for quasi-classical states in the ciassically stable region
k P<Er, 

0 o > 1. In this case the classical motion from one resonance to

the next one Is Torbidden by the presence OT smooth invariant curves

between them.

Due to this fact, excitation and ionization can take place onlI thank-s
to tunneling through the c assically forbidden region. A di;tinction can
then be made between the two opposite cases, when the number of level.
coupled tu4 the field in one period, An i 1 - r*0 D.o f ' I. .--mall

or large. In the former case, perturbation theory hold;. Therefore. the
probability of transition from the initially excited level no%:- Ito nearby
levels is smiall, aid the ionization probabilitiA depends allebralical li on
ko.

W ) x (no :o/ tJ.O tt ' k 2 5')

where k - no is the number of photons required for the transition into

the chaotic conponent. In the opposite case when ,n>> I but still
tunnelinl bPcorne.-. dorminarit, aid we can) reascmnaliq expect 'W1l to

depend on to according to

V,1 o t1 -i exp[- cn0 (Ecr - co)o (2,)

I-here '. nlu heri 3- :cntr t oif the nrder of jniltj, iY-Irepe'-sent_. the

I Orli I2.. I inr rt r- -n hr ii.3,-,tl,- r,- :,ponent, ard the :xporrentia iactr r is:
32: iiiiF'l' , tie , 1ij relw ml In'tj t trp ,l,$'t:,531lq lort dden reqion , rrn

acctMcit Lit it: analog y wvith the formu11la describing tunneling In a static
I, Tl , K 110r I1 fi-,r If i ll 3M I tO4 of ( -F,) 1,.

Jh fJ A ta ', d. -uJ. I".u .i h. -' e*, ; " ' r q ld, e.g., ILI(
All

IntM li . )llL ''' i '5 ienqi d 1. ~



--

1 Itvtlz ]t rIi LI e I -III: I -I " .

it is interesting to compare these results th Leldqs;,'_ theory ior
tirlflplIru.g/_ i4/ Ir wtil'-1l an adiabatic pararreter : : £,/(.n O) z /

is introduced, discriminating the perturbative reglime Y:--'1) from the
tunnelinq regime (Y-:1). In the present case, (2?,) shows that In order
that tunneling ionzation according to (26) can ta ke place it is necessary
that z I while for Y- 1 one falls into the region where
dI!ffu.l,¢e Io-izati onr c':CUiS. For in:.tance, for O),-, -- I, tn; (,,'1, rI

C- eq. (27) is satisfied but T ; 101. Therefore, we see that here

also, ike in /34/, the multiphoton regime occurs for weak field in the
pertur).tive region ((LI <<E P), whereas tunneling takes, place in the

p'.ite ,ca-e of strong field Ic,, > 1* In :luln. due to the

phenorrerorJ of diffusive excitation, the Yeldlish parneter loses i

uil.3} mewnnq arid 3 new parameter I H roust he introduced in order to:

disc-: riminate tietwveen the perturbative regime ', I H::.::- I rao trhe tunneliq

l eI froe (I .--< 1). A,-ccordingl tco the previ'ou._ disc-ussion the new parameter

H H-i11l h ve the pres.ior

.,. .,. " ,.,, tl',! .r32
:'  

i CS

H I 0 ~) i t



4. Numerical Results

4. 1. Methods of Numerical Simulation

In this section we shall describe the numerical methods and the
checking procedures we used in our computer simulation of the
classical and quanturn dynamics of the 1-dim. model.

Reducing to one the dimension of the problem sharply decreases the

computation time in the quantum case, and this allows for a more
precise investigation of the excitation dynamics.

The main computations were carried out on the CRAV-XMP Computer.

The numerical solution of the classical equations was carried out in

aiction-angle variables (n, X) .As in /18/, in order to circumvent the
singularity at zrO a change was made to new variables (n. t )and to a
new time TI which allowed to write the equations in the following
T orm:

dn/dT - E n' cos wt sin
d,'dt = + + 2rn cos At (I - cos .) (29)
dt/dTJ z I - cos " ; X= . - sin

A simlar method for avoiding the singularity at the origin was used
in ,2_/. Eqs. (29) were then numerically integrated by the Runge-Kutta
method. The initial distribution o classical trajectories was taken on
a line in phase space with n:n o and uniformly distributed phases X;
this ,chc'ice correspond--, tc the initial condition used in the quantum
,ase (,rnl' orie levoi Pe-:c: d - ith n=r,.1 '. The full nurrmber of classical

tra lector-,rc. t. .91 on i ':'r

An absorpti,.n mechanism was introduced for trajectories being
tog,, 3e bn've i,': 4n0., A ,hr',e iii thle rrir ci ,:n[sorptrlo anny

weal. l ja i te'd the e c itat i n probatbility.

The ifrV'e'Etiat1 i ti 01 qJu ritii lna'nic$ des:ri, ed tol) the H-amim1ltorii an

(2) "y.asc ,:atr ti cut tI t..,-, -listin':t metlhods. In the first one,
followini /18/, a base of discrete unperturbed eiqenstates was used,
ard the equations ;Aiere solved for the amplltudes Cn of the expansion

AL -. a a -



.j the .[ e ,,e, tor er these Pi Cef:tates:

Ic n - 2i / ri2) Cri + E(t) 7 fit -r'C (301

The value of nmin was approxirnatel4 20-40 levels lesser than the

initially excited state no . A further decrease of nr1 n did not

apprec?abI influence the dynamics, owing to the e-ponential decrease

ot the distribution In = I cn 1in the region n<n o where the classical

rootion is stable. A typical value for the full numt:er of levels for
which eqs. (30) were solved was ND: nia.. - n 192.

In order to numerically integrate (30) the time dependence of the
field was- approximated by E(t) = At E cos at 0 f(t - At) with

At = 2n/wL, where L is the number of integrat l steps per period.
This scheme of integration is physically equivalent to introducing

supplementary fields with frequencies wv = kL.,., k1,2, ... :-ince in

our conputations wo- I/no3 and the number L of steps was chosen

between 100 and 500, then even the frequeniy r.i) :- 1000) 0 wa-Js mu:h

larger than all frequencies for transitions between intermediate
levels. Therefore, the influence of the fictitious frequencies wk :an be

considered to be small.

The integration of the numerical scheme thus obtained can be

carried out exactly; indeed, it reduces to successive applications of a
matrix to a vector c(t):

c(t + At) = T exp[ - lEn (cos w t.)At z] ct)

= T Q Z Q' c(t)

where T and Z are unitar- diagonal matrice, .,th T p: i I I n

and Zrn : expl-1e0 ,cos w,,tk:)At Zr), zf, are the eigenvalues of the

mrafr-i zri , and Q is a unitary matrix that c.arries the same matrix

int' diaclonal formn. With this procedure, the norhal i sati ':' --W n '

1 i 1 ':'Prv i 1"0 .t a Ve li i a': 1A.- r.:'- ' 1"; .1rC .. 1" theI.,

iperator ezp(-itt 0:ost.was computed. by means of its expansion

in powers of At (up to the 5th order), which led to an effective

damping on higher levels and to a poorer conservation of
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I iuuii.i a. t hn . ile' w ew ruethel used here appfears 5..-.)qri f 1.nt14 rore

efficient. in that it perrnits to decrease the nuniber of steps per
pertiodl.

The main inconvenience with the just described integration scheme

is that the continuous spectrum is completely neglected. Ever though a

number of arguments can be put forth 118/21/, suggesting that the
continuous spectrum would not essentially modify the dynamics of
excitation over discrete levels, nevertheless it is important to build a
numerica; nodel free of this shortcoming.

AS tar as we know, no numerical experiment- .is,e lup to now.,e'

performed, giving a precise account for continLious spectrurn/51/. A

partili consideration of transitions into the continuum, has been given
in ref. /'.-6,/. However no account was there taken for
continijm-continuum transitions, which, generally speaking, do not
appear negligible as compared with transitions to and frorn the
continuum. Moreover, the number of equations to be solved sharply
increases with the level number no and this does not allow for

investigation oi excited states with no  60.

A nore efficient account for continuum can be given by means of
the so called Sturrm base. This base is introduced by considering the
following eigenvalue equation:

- 1/2 d2u/dz2 - ($Iz) u =Eu z>0. E<O, V>, (31)

For =I, (31) is lust the 5chrodinger equation for the stationary

states of the unperturbed 1-dim. hydrogen atom . By changing variables
according to =22, u(z)= (0/2)1/ 2v (), eq. (31) becomes

v2= d/d 4 1$ dv/d., + [([/2) 1/(4f) v v -2$

The Sturm base is generated, by considering (32) as defining

eigenvalues -f for the operator U_ where E<() n a3rl 3-bitrary fi::ed

parame ter.

Intltead, considering in (32) fas parameter and E 3-. the
eigenvalues, one would resort to the usual base, including contilluum

eigenfunctions.
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i;:re I? pePc t r u r ' 1s - F ) 2~, with i1 n Iinteer.

Ei en Ii a' t iotns 1 -:'r ' a~ r eg i v en biyi

3~~ ri 1Y 211 2e0ifh: i : ria

HprP, 3ri bel':'w , F A it h t hree r I 3tr 1c III i i J til i T) Ih# Ur P lu rit
hi~ergotiet-ifutjrctio:nr. In the fol lowing. we; ta ctioo e [: - 2n,11,

rif being the initialli4 excited level. Then, z riu- -: t part from C

norrnali1Zat ion cons tart. the n0- th unperturbedc gn rctn

e.3soneed rritrr x eleneret; for 1 and C.Fi:r the'4i are givenl in
/2 611, whiere theyA are- used in ordoer tc' cal'culate the ndl order i-tark
effect. rMatrix elernrrt fcoi 1 c ani be obt ai Hj trig dir e:t rripn(tatic1.

N':'n --ero Plerrerits fo i anid ''are then given byj
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o S, + 1 ! i 2
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with Eo: - 1.12n,) 2 and -'(o)(.V 2/no )fno- lcorrespornding to the initil '

excited level n0. By using the orthonorrnality of the f, and the

expression (33) for matrix elements, from the Schroedinger equation
we obtain equations for the amplitudes A(t):

2(s+1)A-[ s (sli As- S+I . s

I-if[2(s+ I-no)/no2  A.+ 3E(t)no(s 1)2 A+ (4

- E(t)no(2s+ 1)(s(s+ 1))/2 A_ + (2s+3)((s+ I )(s+2)) i(2 Ac.,I+

+ (nq/2.t)[st/(s2 -) A_2 + (s+2) ((s+2)2- I )l1i2 A.,2J}

This infinite system of equations is exact arid. even though only a
discrete base was used, it completely takes into account the
continuum. Indeed, each .'iturrn function is a superposition of several
eigenfunctions frorn the unperturbed base, including eigenfunctions
belonging to the continuous spectrum.

Once eqs. (34) have been solved for A, the original amplitudes r (t)

of the expansion of 4)(t) over the unperturbed eiqenstates

U (z)= 2n -
R
2 &,- /n F(-n+ I._, 2z/n)

can be recovered by

i'Er'.ere ti e ir jr..f ri~tii tr L , tt1.1 rF: rom tli t u't t-, thf,

unperturbed base is given by

F(-0, -(r- 1), 2, - 4 rni',(n-i,))



Here F is ,-au's' hyprgeometric function. A similar computation, for
continuous spectrum unperturbed elgenfunctions can tie made, by
simply substituting i/p in place of n, p being the electron momentum
(an analogous method was used, e.g., in /33/). A method for computing
F with large s, n is given in appendix IV.

The numerical integration of eqs. (35) was performed as follows.
One level sn-n o -1 was initially excited, so that Ao(0)-(./2/no) 6s,r-i"

Then eqs. (34) were solved for ± s ± Sr x. As a rule, s i-0-30,

and the full number NS of 5turrn levels ranged from 256 to 576. The
dependence of the field on time was taken in the same way as in the
previously described method, with approximately the same number of
steps per period: 100<L<500. Just as in the 1st method, the
introduction of delta functions into the numerical scheme made it
possible to exactly integrate the truncated set of equations (34) by
repeated applications of matrices. For the same reason, the loss of
normalization was very small ( - 10-?). Unlike the Ist method, here the

presence of high frequencies ',0'Z kLt.5 led to direct transitions into the

continuum; however, for the chosen values of L the probability of such
transitions was negligibly small, For instance, for n0 =60, .) 1, 6o=0.1,
L=100 we get win 0

3 = 50 and T,, ;3.10 -6 to be compared with TC;2o0
2

7 .02. Therefore the small 8-function kicks introduced by the
numerical simulation of the monochromatic perturbation do not have
any effect on the physics of the problem; moreover, their influence can
be kept under control by varying the integration step.

In our opinion, monochromaticity of the perturbation is important

ior this problem, and substituting a 6-like perturbation , t-2fl'/i)

1n Place (If t LCos(Lt /. 37/38/ car lead to a si-qrifficart mcdific atlon of
the physical picture of multiphotonic excitation. The role of
rrultiphoton transition in the 2-dim model with a 6-like perturbation
was studied in ref. /37/.

The values of A,(t) obtained b!4 integrating (34) were usced to find

the amplitudes cri(t) over the unperturbed discrete base bi4 means of

the transformation matrix Bns. In this way c,(-z) were found for

approximatelyq 200 levels. Since the total probability was conserved
with high accuracy, it was then possible to determine the probability
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,I ef cIt.ation I bon ' ,e a 1i1en Ie &, I.rl j i . I- ir ttiIltq ii t rt r ti

into the continuum . h ic h is i n- ui'j in the former . (T ho
particularities of the distribution ir the continuum will be
investigated in another paper).

Several characteristics of the excitation were carmputed by the
described numerical method. Among them, the most important were the

distribution over unperturbed levels f.z Ic n12, the 1st moment

M, (<n>-no)/n 0 , the 2nd moment M2 <(,An) 2 > : <(n-n>)'>/ no,. and
the probability of excitation to high levels. In order to describe the
latter we considered the probability W,9. of excitation to states with

n> [1.5no], where ( I means the integral part. For computations in
Sturm base, this probability included also the probability of ionization,
namely W'1. is the total probability in states n2 1.5 no plus the

probability in the continuous part of the spectrum. In order to
eliminate fluctuations, we also determined the distribution fr, averaged

over A-r periods of the field; as a rule, At was chosen 40 or 60.
Finally, we determined the average distance of the electron from the

nucleus, <z>.

The accuracy of the numerical results was checked as follows.
First, in order to check that continuous spectrum was being properly
taken into account, we performed a series of experiments with
frequencies larger than the I-photon ionization threshold, wo > no/2.

In the absence of resonances within the discrete spectrum, the
probability on discrete levels with n > 1.5 no was then negligibly

small, so that the probability of ionization W, % Wi, An example of

dependence of W on time is shown in Fig. I. In Fig. 2 we show a

cornpariscn of the theoreti:al ilrization r-ate with the nurrerica1 14
obtained one. As can be seen, there is an e: cellent agreement with

the theory of I-photon ionization (22), which indicates that
computations in Sturm base el ticiently rep,-oducie continuur effects.

A different type of check w;.as gotten bu inr--sinq the number L of

integration steps per period. The relative chanqes cif the

characteristics of excitation Produced in this wa4 were ver- srall.
For instance, in the Ist rnethlcd (unpertur-bed tase., 1IE:) wih i-, z 66,
w0 = 1.5. (o = 0.04. a change of L from 200 to 300 for r = 120 led to

a relative change AWh 5 /W. lot A<z--/<z> 4it
. Of the



1rw ,i ,jet., r r , .j <,, the ch r i - in :1ti. rr ba se (:531 . ever for rathe

r J I v .je.' of i . . For ins.at.3nce, for no - : nf2, u -- , ,

1i', W1 .r .4.1' '  upon chanrgi ng L from 100 to 200 the r-eative

change in probability arid in <z> were A<z>/<z>:.-AW 1.5/W., 5.10 -

We can therefore assume that for sufficiently large L the effects of
rurrerial ds iretlizatio in the integration of (30) arid (34) become
negigibly small, ani have no influence on the physics of the problem.

A further- check c-onsi.ted in changing the total number of levels

both in the Sturm and in the unperturbed base, and also in matching
the excitation characteristics obtained by the two different methods.

One such comparison is shown in Fig. 3a. where it can be seen that

there is a good agreement between results of computations in UB and
in 5B, and also that an increase in the number of Sturm levels does not
change significantly the excitation probability ,which includes

co n t i n u am).

Such an agreenent not only takes place for integrated characteristics,

but also for the distribution over unperturbed levels (Fig. 4). It is then
possible to conclude that continuum effects do not lead to substantial
modifications of the excitation dynamics, at least for not too strong

fields and high frequencies. Moreover, the :5turrn base used in our
computations appears large enough to provide a satisfactory model for
quantum dynamics, including continuum.

Of course, a numerical scheme whatsoever necessarily involves a
discretization of the continuum, and shall therefore fail under
sufficiently fine tests. Our own method, an di-cur'ssed above. correctly
desc-ribes the continuu spectrum at least in so Tair as ole-photch

effects are involved. A more deli cate t.si '.v uic 1 re i, io- irr-.t.3nce,
reproducing tunneling in a static field: this is an important problem

for the corrputer simulation of actual experiments on microwave

omi otln as we sh.:ll discuss in sec. 4. Her'-, a 0nay need more

sophisticated techniques. Whle this is a real proien for future
Invt'estiiq41 ICon-, the really rpuc'i t.ni que-t o'V no,;: I-. \Awheth_ our

scherne was gocid enough, th.at the ic 31 catior-delocal cation
rite h.ni:".i~tt. ;h...hic is the is.c1tral cb ect of the present vil , can De

ccnSluered am citective phenromenol and not nc -just ai arte, act cii
numerical simnulation. In this respect, the agreement we found between
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jass-ical and quantum cornputatiors ir the del,:'calized regime, as we
Shall discuss in the next section, provides, in our opinion, the most
convincing element in support of our methods.

The dynamics of quantum excitation was investigated for no = 30,
45, 66, 100, and the field ranged in the interval 0.01 < Er, < 0.34. In
order to facilitate conversion to physical units, we note that for no =
100 the frequency w/21 = IOGHz corresponds to owo = xno 

3 = 1.51998,

and En = En0
4 = 0.1 corresponds to E = 5.14485 V/crn.

For clarity's sake we have grouped our numerical results following
the order of the previous theoretical analysis. Therefore we shall now
discuss, in turn, the results on the classical model, the results
demonstrating the localization phenomenon, and the results
illustrating the dependence of the excitation probability on the field
frequency.
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4.2, Numerical results on the Classical Model.

The dependence of the excitation probability of the classical systern

on the frequency w,., and intensity E0 of the field is shown in Fig. 5. Here

the excitation probability W.,, is computed after =40w0o periods of the

external field. We recall that the initial value n, Is irrelevant due to
the scaling property of the classical rnotion.The characteristic

oscillations with mi ni ma near integer v.alues of w0, are cnrinected with

the presence of nonlinear resonani::es. the strongest of which correspond

to integer In fact', the destruction of the centers of resonance
regions : curs f:r- larger field than their overlapping ().

Then, for not too strong fields, a part of the trajectories from the

initial distri butcion, which is uniform in space, upon entering the chaotic

region, diffuse to higher values of n, but the rest fall into the central
<table regi on of resonance, wvhere they remain giving no contribution to
W 1.5.

The characteristic dip for c o  0.5, which was also observed in

numerical experiments on 2-dim. atoms /40/ corresponds to a 2nd order

(half-integer) resonance. The sharp maximum of WI. for w4o 5 0.7

Cweakly depending on %O) is due to the fact that for this frequency most

trajectories fall into the stochastic layer of the separatrix of the big

fundamental resonance (o = 1. Already after half a turn around the

resonance they pass into the high-n region, where excitation is
:-ignific:antly stronger. An analogous excitation mechanisr, connected

with the 2nd order resonance at "-o = ,.5 explains also the maximui at
:-',i= 0.•4 3.

In the classical system diffusive excitation takes place only when the

field strentith exceeds the critical value for which the last KAM

,'* l7 he '.*.lue: of the I ield at wii:- h the centers of re:o. nan-e regi, :, are

destruijed ' numr etril l'1 dete [rime' ii il / .
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,v. tr It ,lt- .r I E. df.tI,-o d and threre Is a t ran 1 t I Ot to global
stocasticity (see e.g.. /5/). From Fig. 5 we see that the actual value of

Ecr ior wi , 1 is near to 0.02, which satisfactorily agrees with the

theoretical value (3) obtained by the resonance overlap criterion /5/.
Fig. 5 gives an overall idea of the classical behaviour. Other numerical
results such as the comparison with the solution of the diffusion
equation or with the quantum distribution on the unperturbed levels will
be given in the following sections.

4.3 The Distribution over the Unperturbed Levels

Here we shall describe the features of the numerically computed

quantum distribution over the unperturbed levels in the various
parameter regions which have been discussed in our previous theoretical
analysis. In this way we shall show that numerical results support the
theoretical estimates given above.

For high levels ( e.g. n0 ; 100 ) and E tcr k 0.02 the perturbation

strength V z (3/2) n2E is significantly larger than the level separation:
V/AE - (3/2) Eo n > 1, so that the field would be expected to connect a
number of unperturbed levels. Yet, even for Enn - I no diffusive
excitation will be observed if E<Ecr . (The opposite case co n «-I

corresponds to the region below the "quantum stability border" /35/).
This is illustrated in Fig. 6, where an example of stationary distribution
in the reglion of stability E<cr is shown. This distribution remains

essentially unchanged upon further increasing the computation time.
Classically, this fact is due to the stability of the motion, and quantum
mechanically to the very small probability of tunnelingl into reglons
classically forbidden by srriooth invariant itrve (5pc. 2.5). However, for

a reliable detection of the tunneling descrioed in 5ec. 2.5 particularly
accurate investigations are required. It is also de"irahte tn inrease no ,
because even lor noz 100 the tunneling regio; appears rather narrnw (see
eq.27). Nevertheless, we thinkl, that turnel I rig e:: tat ion c an be
investigated both in numerical and in laboratory experiments, where at

the present time it is possible to prepare states with n0 3(i /25/. We
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. Itprrrt n i I td- are still I t:I I rig.

For tie Id strength ex' eedilrig the crit -al JlItp , di ii t1 11 Yl ex itatli

takes place in the classical system. However, in the quartum case, for
field strength lesser than the delocalization border (15) the phenomenon
of quantum Ioc ali zati on is_- observed, in : orseq uer,e of whic h thio
distribution over the unperturbed levels reaches the stationary form
1') and then does n':t chang,]e upon imcrea:gr, the tirrie C:f interactioni

.11th the field. In this situation, the ionization probability Is very .mall,
and can te neglected for the glven interaction time. A typical example o
quantum localization is snown In Fig. 7. Here "e see that claslically
there Is a difffusive e:c itation, :u that the classical distribution
obtai ned by the numeric.31 simnulatilon satisfactoril 4 agrees with the
theoretical formula (5a) (the classical brirder of stability was here
chosen at n 55 ac c ording to nunerical results:). The quantumI
disti-butici w.J CiLtfired t'' the 'Ituri-ri base method with N.; z 576; here,
as tell as in Fig. 4, there is a good agreement with the results of
corputations by the urperturtel ta-se met hcod. in cocntrast 'ith the

la"s ia Iresult, ii the guanturm cjase an expcinertialI drcp lollowed t'yg a
rnultiphoton plateau is observed, almost unchranged under a change of z
fror 121) tri 60o. Th e ls3ntuni Iirnitati : 'rn f c hcs l.-.o: led to a
sigrificantly lesser e:-c tatior probability in tile Ctlanturn than Il the
classical case (see also Fig. 3),

Another convincing manifestation of localization was the saturation of
the diffusive growth of the moment oi the quantumn dlstribution (Fiqg. ).
The agreement between quantum anrd 1-lassical hd r here holds only

:,ver a smallitial time interval The srallec.. l -:, i. due to

thip Irll r ,II f the -v : tI I I 1 ' l 1 T n,, kr-tP

I Fil. Q it ' i I I h . 'tJ- r 'i J i JCe igt . !'tajii
FfL:<:z(t)> n," of the ec: tr:rI iron th p lf u leperndE, onI tine. In the

I i ,ic nu:iric. .f J l I i, mil ' gi 1a1 thI , itl ' i' ig H i t i ii)
I- r ( it It f li -I l ¢,ll. p 1-rP I_ __, tI .)(ftjr,, I rll l_It 411 _rttItr!

I0 .lkl ] l h I tl P'!)M ,ITr IIJ1 0 1 I ,% I f IHI1 Ih . ItIVP :- t . I lit 1 Iri l r.

kh-k ~ rl i l.rt ll l~ ] l h l r '"4 .I '.' t q]~ d l tl l] e e i
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'.K _ ,45, 66,1 ')', lot Irequenic s I .L . 3 ai d Ield iItenitIes .'.
t (1C. 12. and localization length I>-I (which is the condition for

applicabIlity of the estimate (I)). Numerical value;, for the localization
length were determined directly fron the statIonary quantum
distribution. Comparison of these numerical data with- the theoretical
values ( Eqs. 13,14) yields good agreement (Fil. 10). The observed

dispersion of points is apparently connected with the presence of islands

of stability in the classical system. Also, the presence of a typically

quantum resonarce structure niay play a role In this respect.

If the field exceeds the quantum delocalization border (15) then the

quasi classical diffusion over the levels is suIliciently fast and no
locali-zation takes place. In this regime the evolution of the distribution

function can be approximately described by the diffusion equation (4). An

example of distribution in the delocalization regime is shown in Fig.

1 la, where it can be seen that the quantum distribution agrees with the

solution (5a) of the Fokker-Planck equation.

In order to check the valiidy of the estimate (15) for the

delocalization border, we investigated the dependence ot the excitation

probability on Eo for different values of no and of *N@. This dependence
on the rescaled field o = Eo/Eq()is shown in Fig. 13. For each value of

no, 0 o, the excitation probability W,., was also rescaled to the

corresponding classical value taken for Eo =  in other words, in Fiqg.

13 we actually plotted W 5 (Eo) = wl.5q (Eo)/W .l (E0 ) _

In case that delocalization should actually take place for eo;.%i1 , and

that in the delocalization regime the excitation probability should keep

close to its classical value, then all the lines showinq the deperidenc:e oI

' (E-) for different O..alue; ct f nt,±, c'',ld '1 ,e expected t,: rne&t tcr '--

I at the value / I. A. c.ari be -.een from Fiq. 13. thi- is ust v'hat

actually happens.

An interesting feature of F q. 13 ic. that the dependerce of the

ionization probability on the fielI strength at fixied f:, w(, is not alway..4s
monotonic. For example, the data corre-_ponding to no =66, w o=3 clearly

indicate a "bump" occurring In the Ionization curve. The existence of



recently pointed out in /47/ .nd a theore,tic.l exPl aria/t1on war put forth

In the localization reglime, the dependence of the excitation probabilty
on field intensity can be approxi-nately described by cc, 1 <. Fig.

1 also clearly indicates that the experimrental value o-f k c hanger.
sub-..st.antiallqh with n,, it0 , So that jucninirg 1 .311!] ines at .a single point
for ct, z I I. nut a trivial oc curr-ence, and can be considered as a
confir-nation for our estimate (15). This dive-.ty in the value-, of i sc'

connected with the different numiber of photons which are required for

excltatl, on I .tates; with n -- [1.5 n,]. However, the experi rnentall1

determined value K, is., typically, substantially lesser than the number K

of photons theoretically required for direct transition from n( to n 1.5
n0, whilich is k i [5n./ 186w 0 .For instance, for n,, 2 Cc, (0 0 - 1 .one

has k[ 7, k[ 2 19.

In our opinion this oi fference is due to two effects. The first is that
rnultiphoton tranisiti ons do riot necessar-ily start from the initial

unperturbed state, but may start from anywhere inside the stationary
dirtribut lnl (10) which sets up after- a while. In other words, when

1 -I- I excitation may start from levels n- n+ 1, arid this reduces the

multiphotonic degree k. The other- reason is the appearance, for high
levels r>rf, ci a oul t ihphoton plateau of equidistant resonances /2 /.

Examples of distributions r which clearly exhibit this multiphoton

plateau are given in Fig. 1 4a,b (see, also Fig. 4). The differences in

unperturbed energies Er 2 - 1/2n2 betw*een consecutive peaks of the

dirtr bution are equal to the field frequency; therefore, the sequenc e 01
peli.-c .,.cn rip rn uImig3 e:.pl.3i lrled 3'-1 the re :ut f *a chain of 1: ne-hoton

In the .e ilIu-.trated big Fiq... 14a, b the"., ti-anSitiOns r.t.3rt dire:t-ly
fr om the iti 3i -aItate n0, and the peals can be enumeraited s imply big the
nirlrliar IT phrnr . H-"wevc,,.' the ritua l i'is iur t .Iw.ai4 that sitlple; InI

'I I-it ' P: -.es, the Ciraln Ci pT 'ai '-, ores-, niot .ta-t 11rm Our. tlt rather
It LIMi r'ciie.whe et e Ins_:.ide the IcicaJlied dJti butioni ,:ee FiQ. ' iii Ref.

aA - a
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'21/), and it is even possible to observe twoc or (hree distinLt chains
within the same distribution.

On the high levels the amplitudes of the peaks become roughly the
same and they build up an equidistant plateau. Increasing n still further,
the peak amplitudes do not decrease; this seems to be due to the fact

that on high levels the field is strong enough for the probability of
transitions between nearby peaks to be significant (saturated

transitions). This is the second reason why K, < KD

Upon increasing the field, the multiphoton plateau rises as a whole
(Fig. 14). The resonant peaks become broader, but in a number of cases

they do not disappear, even in very strong fields and in the

delocalization region. However, this can usually take place only for large

wo (compare delocalization in Fig. I la and 14b, for no = IO0,

0.o 
= 1.5 and 3, respectively).

In our opinion, the appearance of the multiphoton plateau below the
ionization threshold is in its substance akin to the appearance of peaks
in the energy distribution of photoelectrons which is observed above the

ionization threshold /41/42/. Indeed, for large n the distance between

nearby levels is very small: AEc'cw, and the spectrum in this region
behaves like a quasi-continuum. It is then reasonable to expect that the
peak structure observed in the discrete part of the spectrum will persist
also in the continuum.

It is possible that a theoretical explanation of the multiphotonic
plateau in the under threshold distribution may be given, along similar
lines as in /43/.

A a
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Th.'. w n. lJte for the chaotic threshold w,' i5 . ustifled ih the f,':t

tha t tor u - I there are no I st order resonanlces between the
frequency ot the external field and the harmonics of the frequencies of
the motion oi the cilassical electron /17/; therefore, chaotic
e-Xcitation for frequency wo < I can take place only for so strong

Tields that higher-order resonances overlap. On the other hand, for
verJ low trequency w00 ::- 1 the value oi the critical lleld , coincides

with that for the classical static: field ionization. Notice that the
Ihreshold (36) holds only if Eo : I1/50. Otherwise. the chaotic
threshold has to be determined from eq. (3), and is equal to w t Ii

S_,0e_0 ) .

According to the theoretical estimate (24). the diffusive ionization
is more effective than direct one-photon ionization. In order to check
this prediction Y./e pertormed a series 01 numerical experiments, in

which the ionization probability from states with rln = 30 or no = 66
was investigated over a broad range of frequencies. The field intensity
was so chosen, that direct two-photon ionization was considerably
lesser than 1-photon ionization except for intermediate resonances;

moreover, En < E., where E is the critical intensity for static: field

ionization. In this situation, the photoeffect is expected to display a
threshold dependence on frequency, with negligibly small ionization
probability for ;.0o e:o = nrj/.

Such a picture of the photoeffect proved to be incorrect. In Figs. 16,
19 we show the dependence on frequency of the excitation probabilty
WI, above a level ff after a dimensionless time . = '.,.n which

corresponds to the same physical time for all iio'S. Computations were

rmadje in Stur-r base, sCI th..t W en closes. the piotbi.l1ity' cf tr -ri .ItlOn

irtin the continuous spectrur . For n, - 1), n r -,: tnereicr-e in trinE.

case W W I. For n. = 66, we took n = 99. and then WE enclosed a

.:.ii.lnificant part of the probab i ty on discr-ete unperturbed 1e-els . In
Figs. Ii6, 19 the most effecrit'e e::citaticins :tservel i i eqUeliOE

Iel celow tie I - rh0 tl:1'i ti"pc.hrIn .TIe nev Ire.Ii.ll .-njij p : •- .

: to the c crrec.pcini c 1 a.si: a l vaIue am Id. 'I &>:, V nel bt'c.i, i3;

AL M_ -



Fur sufficientlq sti-ongj field. J ppears_- ci got fic mt0114 1p.. set thatr 1:

Ic At.- . I' the exeietlv joe ('or cm i,j f ir

u66, i, r the threshocld is uo 5.

ecI tati or e eri f rorr the rei li t-Oric doeI to tunnIlel ig Inrto the

c~i ucicalliy forbidden regi on. In the intervail ,o, 09 o nuo

del oral izat r rn takes p1aice, so th.3t is 1C ':3- t't' Its clsiavalue0.

1 o)r :)) L : .. . : , quantumn plite ts 1ai toc t ile lI': 3 1aliin ri I
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level n is: nearly z:ero if ait the 'aiven obs-ervation time Ethe di fusion

has riiot yet reached this: nti i.e. if T <..t-l~.t Hr-wever, in the
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,IIFfu.-.i'e P, .c It t I:ri In tl-I -e: ueicy egI- n1[ lie bI: etweenl 11.-4 . ftl

'.05. )F ig. 5). In[ the quant tur case, upon vajry ing l fromn .04 tI o I ('.It

the excitation probability changes by about two orders of magnitude.

This rneans that delocaliZation occurs already at io : Err, so that the

field intensity yielding 10% ionization ( which was studied in ref. (26)
will be found to agree with classical predictions. In other words,

these numerical experiments oi ours show that lahioratory experiments

/12126/ were perforned in that parameter region where 1-din.

delocalization (and a fortiori 2 dim. delocalization) takes place, and
this explains the observed agreement with predictions from the

classical model.

4..5 Statility of Quantum iffusiorl

Even though the "diffusive" ionization, taking place in the

delocalized regime, is to some extent similar to the classical

diffusion which occurs in the chaotic regime, the quanturn syster is

still short of exhibiting all the statistical properties that would be

expected of classical chaos.

The most striking difference is the absence, in quantum dy narmics.

of the strong instability and of the rapid loss of memory associated
with classical chaos. In computer experiments this effect leads to

irreversibility. Indeed, even though the exact equations of motion are
reversible, nevertheless any, however small, imprecision in solving

them. such as. e.g.. computer round-off errors, is magnified bi

exponential instability of orbits to the extent that Initial conditions

ire eli ac.cO ai31 rev+,erSi l t1 i i l t ee tore lestriye,].

lIvp'e.tlji iJtoO - ined veilftying .hetllei an Iiiligou-.
irreversbiIoity would be d)ispl ayed al-so by the numericiy 1114 ornputed

.3f'fltfi eiltti .,.ere (,-: ribed in t. o ir the 'i: rot pt- r , Here
',,A/'W pie :d.eo~t nlumferic l res, ults, for tirne-revers5al e*:perioinerts i

th. I - dinr'ioual H-a tom. (F i'. II, 12'. Tho rti~on pv-.mctcv

i e In'l the region of IelocI alilatInr ihereforP,, up to tie roo eri

A. .



i tih Cre.'. .l ?t z n. lIiii .lZ...' e>::lt. l I-. C c -n' o rboth InI the

'u-ailtum i3nid in the c;lassi'.ql 'ystem. Indeed, the distribution on the

qu.aituri level:;- .t 7 60 is close to the classical one, arnd 1- well

aescrieo by lormula 5a). Then, at - 2 60 we reverse1 the velocltles
of all particles (N = 1000) in the classical ensemble, and changed the
wave function of the quantum atom to its complex con ugate. In both
classical and quanturn mechanics, the H-atorr: would be expected to
find its way back to the initial state. However, due to the finite

computer precision, ri the classical case -Dlulch a return is not
ubserved. The system retraces backward its history just for a few

periods of the field, and then, again, diffusive excitation occurs.

Instead, in the quantum case an almost exact reversion of motion is
qotten,: at time t = 120 the electron comes back to the initial level.
This is even more remarkable on account of the fact that, in order to

restore the initial state, some of the total probability had to be called
bac:I fromi the conitiriuur.

The conclusion must be drawn from this exact reversibility, that

even thougi the quantum di.iffuson whict occurs in the deloc:alized

reqine of the H-atom is by now the most chaotic example of quantum
miotion hitherto investigated, nevertheless this quantum "chaos" is

essentially. different from the real chaos of classical dnai'lics.
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5. Experimental Results

A large number 01 laboratory experiments on ndrogen and aie all

atoms in highly excited states have been performed LIP to now
t12/13/22-26/. Additional interest for such experiments has recently

arisen in connection with the possibility of chaotic motion in quantum
mechanics. It is now possible to perform experiments on microwave
ionization on atoms prepared in extended quasi I-dim. states /23/, Here
it is possible to measure the ionization probability identified with the

population of levels higher than some suificiently large n, including
rontinuurm: this delinition is partlicularly convenient Tor comparison with
nurnerical experirments. Also, it is possible to measure the probability

distribution on unperturbed levels. This allows, in princepie, for :

careful comparison of experimental and numerical data.

In particular, very accurate experiments on )-dim. H-atoms were

carried through as described in /231. The range of parameters for these
experiments lies inside the region of low frequency (w o % 0.2) and of
classical stability, so that the results can not be used as a test ior thetheory presented in this paper.

A different series of experiments /26/ was performed on 2-d
H-atoms. The conditions of these experiments rot only lie above the
2-dim. delocalization border, but even above the 1-dir. one. For this

reason. our results predict an agreement with classical computations. a3s
indeed was found in /26/. One possible explanation for the not complete

agreement obtained Is tMat the experimental values in /2b/ migth te

above but close to the delocalization border, when one should not e'pect
j bet ter ag reerent tha:n w.i wthen *a f3c t r 2. T,: :3 r f u this po i nt we show
en Fii. 20 the c,omparns-,n ':If nunrrere,:3 1 - .Ie . quart urn ad Ia i C si cat

ionization probability slightly above the border: there is a strong

excitation in both cases, but, unli e stronql delocalized cases, (Fig. 11a)
here the two results only 3,ree i.thin .3 5').
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, , e::periirent.al tec hnique; al-,w fr . 'erU *: uiate e.a ureieit.,
it is h-ighly desirable that the condibons of the e:-perimerts be defined
as precisely as possible; for exarnple it is more convenient to choose a

ogru1lle ex-.itea state than a ricroc-anonical dilstrioution. From our point
of view. a roost important goal for future experirlents Is to observe and

to tJudIy the new and unexpected localization pherInmeron in classica1lh
ihaotic situations. For this it is necessary that the frequency o-1 be
Increased above "*± z:-I, since in the region wl> a large separation

betwen the cllassical chaotic threshold wr and the quantum

delocalizatior border w, is expected. In the high frequency region it is

also prissible, by varying the field strength, to observe the transition to
idelocalization as: well as the other pnrenomena dlescribed in the present
paper.

Also, in order to give experimental evidence for the "freezing" of the
wave packet in localization, it woiuld be desirable to dispose of a control

,n the iriterac tiorn tire. This latter posSibilitq lie; withil the
capabilities of present day technique/24/.

We .c.'..'o1l0 Il ke also to stress that all the pnerioroena described in this
paper should be observable not only in H-ators, but also in different
31fI 311 ator-. In order to produce hydrogen-like states in such atoms, one
should take i rt ci account that, the uripertured spectrum for
highly-excited alkali atoms is slightly different than in H-atoms, due to
quanturo defects. However, for values of 1>3 this qualturo defect is
negligible. Since in linearly polarized fields the magnetic quantum
nurnber rn is a constant oT the rootion, by exciting states with m > 3 it
is p .ItiIe to ecite :ta Ctes wIt n I->_ w- Icri.:r correspc'o'i verj well to the
iy~drogeri StCitintion. It i-. then possible to c - der al._c'o I -di rrsi oral

-tt'' [ ' : i_-tirn'. level:. ,;vlfth il:, n. ii, it 1  ri Fi- I :rd this.-

I:- itati:rl Ci rl tie achle'.ed via liqht-indu::ed reso .iit traiqitio's. 'Ire
w.iould then get a situatiar in which l1ocalizatior and other effects of
i.iaritiirr : h[a 1.: m i h t tle t ld lpd .
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FIGURE3 CAPTION

Fig. I Ionization probability W1 as a function of time zc (number of

microwave periods) for the case no =30, wo= 30, = 0.075. The solid
line is drawn accordinq to the analytical expression (22) while the

crosses are the results of our quantum numerical computations. The
excellent agreement with the theory even for very large frequencies is a
check o our numerical computations and snows that turm base

efficiently takes into account the continuous spectrum.

Fig. 2 ionization rate versus field intensity for the case no=30, 00=30,
Like in the previous fig. 1, the straight line is drawn according to the
theoretical expression (22) and the crosses are results of quantum
numerical computations. Here also notice the very good agreement
between theory and numerical results.

Fig. 3a Excitation probability W. 5as a function of time z for the case

no= 66. Eo=0.04. wo=2.5. The quantum numerical computations are

performed by using: 0 the unperturbed base witn N=192 basis set
eigenstates ( solid line); ii) the Sturm base with N= 364 (dotted line);
iii) the Sturm base with N= 576 (dashed line). The fairly good agreement
of the three curves is a check of the numerical computations. The
classical ionization curve is also shown.

Fig. 3b Classical (1) and quantum (2) excitation probability W,.5 as a

function of time for the same case as in Fig. 3a.

Fig. 4 Quantum probability distributions f(n) over the unperturbed states
,jveraged over 60 values of c=t/2rr within tie interval 60<r- 120.
Here no=66, t.o=0., .,0:,= 1.5. Three different curves are plotted
corresponding to integration in 5turn base with a basis set of N= 364
and N=576 basis functions and integration in unperturbed base with N=
192. The threte curves are so close that are not resolved in the graph and
this i-s an additional check on the accuracy of numerical computations.
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Fig. 5 C lasl C) ioniz.atiron prbat,i 1lt. 1 W1 s after c =40 ), 0 a- a funrctiin

of the microwave frequency for different microwave intensities. Here
Wi., is the total probability above the action value n =1.5n o. (x) 0

=)..2; (.) E O.03: (o) 6o = 0.04; (A ) 0 = 0.05; (.) E0 :0.06.

Fig. 6 Classical (-) and quantun(- probability distribution T(n) averaged
over 40 values of z within the interval 60<z< 120. Here no= 100,

nzi.. .I, ,.: 1.5. For these parameter values,% E<cr<Eq and therefore both

classical and quantuI packets are localized. Notice the small tunneling

through the classical KA1 invariant curves.

Fig. 7 C-lassical ( dotted curve) and quantum (solid curve) probability
distributjon Pin) a'.'erag ed over 40 periods of . for the case no = 66, )o 

=

2.5. -o 20.04. Fig. 7: average within the interval 50-T<120: Fig. ?b
average wA"ithln the interval 560<--:-:600. The dashed line in both figures
represent tle analgtical solution (Sa) of the Fokker-Plarnck equation
which fairly agree with the classical numerical results. On the contrary,

the quanturn distribution is localized and do not change significantly by
increasing the interaction time with the microwave from 120 to 6010.

The only difference, as expected, is the slight increases in the peaks of
the small multiphoton plateau.

Fig. 5 Second moment [ 2 z<(n-<n>) 1nJ of the classical (solid line)

and quantum (dashed line) distribution as function of time t.=(.ot/2 ror

the same parerneters of fig. 7. The localization of the quantum packet
s.-.hown in the previous fig.7 leads here to the suppression of the
diffusive growth of the moment M2.

F ig. 9 Normnalzed average distance Rtzwz(t)/n 2 Of the electro from
the nucleus a'a..3 function of . for the same cas.e .3 in Fig. 7. (dotted
line ) nuanturn Ca:se; (full llne) clas:ic.l case. AIso.: here tle quan .Irtu uri

.,uppre.iSocit 'I lfusion Is. clearl4 ma l est.

Figq. 10tL1 L a izatin length as 3 1.1c on of iel (rfter pi t' for if ferent
[,:3rarr~ltf '.,r.a ... I he O 1;.:; 0d t ip 11: a1.t ly , as.red v lue;



of I which are in good agreement with the solid curve given by the

analytical estimate (13)

Fig. 1la Classical ( ) and quantum () distribution function 7n) averaged

over 40 values of z in the interval 40 <z<80. Here no= 100, e.O4z1.5, Eo=
0.08. Notice the fairly good agreement between classical and quantum

numerical results and the analytical solution given by eq. (Sa) ( ).

Fig. 1 lb Probability distribution over the unperturbed states at t=120

for the case of fig. I la, after reversal of velocitiesa at c=60. Notice

that the quantum system (open lozenges) recovers its initial state to

seventeen agits wich corresponds to numerical errors. In contrast, the

classical motion (solid lozenges) proceeds according to the diffusion

equation (5a) (squares).

Fig. 12 Claasical (solid lozenges) and quantum (open lozenges) ionization

probability (excitation above the unperturbed level n=150) as a function

of time for the case of fig I lb. Notice the perfect specular simmetry of

the quantum curve about the time of reversal r=60.

Fig. 13 Excitation probability at time r= 60 as a function of the field

intensity for different values of no and Co. w1q(E0)/WCl(eq(i) is

the quantum excitation probability at Eo rescaled to the corresponding

classical excitation probability computed at Eo=Eq . o :=E/ q6<M is field

the rescaled field intensity. () no=30, wo= 3 ; (.) no=45, j)o= ; ( ) no=45,

woz3; ()no=66, w)o= I; () n0=66, o0:2; (x) no=66, 0o=3; (o) no= 100, Woo:3.

The fact that all points coresponding to different no and wo meet at the

value 'WI =1 for Z0l1 is a numerical verification of our estimate (15): it

also verifies that, in the delocalized regime, the quantum excitation

probability is close to the classical value.

Fig. 14a Quantum probability distribution T.n) averaged over 60 periods

of c within the interval 60:. <120. Here no=66, (. 0=2, and e:z=.03
(liig. 143al ): c lOi(fig. 1 4a2); Eo=0.14 (fig. 14a3).

- . =



Fig :: Ah n : aeas Figq. I 4Ia w i th n0: 1=I w±~3 and EI.K F ill. 14'b 1';
'lug. I4b2); Eflzu~.2' (fig. I141:3).

Figq. 15 Exci tati on probabi Ii t0 W ICasi a f uric tion of f requenc 1qw- at

:4'for fi:ed to 0 '.04 and for- diffterent no.:.'i~71'I 0 -. ':'
r56b; .+ 9 o II,. T heP sol I b 1rie g iv.-es th r cla-1.ji caj e: :i tat i nn

prI-ci bat'i i It '4. Nocit i I- e t hat. , 04 icireasinrg t h, t i g.arnitujrri exc i-,t a3t I iri

probabiIrtij tiec omes trl IIh less thatl the c orresprinding cLid io al onie due
to the f ac t thajt t he d Ilo.3iz- a 7at io n btoir-d er (eq. 151 ii' i ,c ': P Iti t0I

Fig. IF. -janturn Frotat li t'4 di stritbuti on I n 1' aver agle ''0 .[i 4'' pen onsc

cf r i n t he Pinter val If 4 t (1~ for r tic' & 'x 'P '' z 1t di .erert1 1
no. Fig. I 6a no=10 S .1^'1. n u:66 l- -': Fig. Ilb n< - ' I no: ti

-.The ': las-sical protati I it'4 Jisti-tto s aL. n Ii . Ii .iii

to c C crIpare C t hec qUla nt LitrrI d is t rIiut ins vi th di Ift 'r ent Ii i thI the C
cl assical Cne, weip have Introduced rescaled quanltitief i 1/r cc f ~n d r
= ittr-/n 0 ) n. The sealing property of the quantum di in it inn and the
fairly) good agr-eement with the classical motiFr I c, 1i t,1-1 th e
'jelocca Ii ation phenc'menpron.

Fig. I 7, Fine structure of the dependence of exci tationi prptiabiIi tij %WVI~

on freguency*o at -r=4o for fixed EOZU.0-4. (o) n0=45; I1'.+ n1111:'1.1'

cla ssical r-esults;.

Fig. 1 6 Ioniz-ation probability W n~IC,£versus field frequency wL~

after a time r l'Th.'ri which correspondc tn the sarnei real1 phy':al-, time

Quanitumn theory-1 '1::;1: clasia theory ' 11 '. Ioti :e thait 'o, I-- heire

prob'tat'iliti, thc' 1::-ntrib'.ti':t of states. v'it l V, 3k." i s'l:! t': le.

Fill. 113 >'.Jiii .- fill. l I thF.: ~ 2'' I)i
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Fig. 2) Cl :;.s., ,l (.) jird quantur (+) eXCItaticin Crob ahilitl4 as. a fuRIctI or
of time for no=66. EO=0.06. ,Oo= 0.43. The quantum system is delocalized
but since we are onlu, slightly above the border, the quantum excitation
is less than the classical one.
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6. Conclusions and recommendations

The study 01 the i-dim H atom in a monocnromllatic I leldi tat we nave
described in the present paper brings into the light a number of facts -
sone of which were rather unexpected.

These facts concern both the actual physics of atoms in microwave

fields, and the general problem of quantum dynatmlics in the region of
ilassicjlly chaotic motion. Even though the unperturbed eigenfunctions.

as well as the matrix elements oi the perturbation, can be well

approximated ti4 their serniclassical expressions, it maIy well nappen

that quantum and classical time evoIlutions are essentially different, due
tc' the pherirnericri of quantum localization of chios. it is interesting to

note that investigations of this phenomenon were pronpted by studies on

the rotator model /4/. It is a remarkable fact that this phenomenon,
originally4 detected in a somewhat artificial model, has now been shown
to exist in a physical system. so that there is a real possibility to
observe it in laboratory experiments.

'Dn the other hand, for the H atom also a delocalization regile exists,
and our theory allows determination of the threshold for this regime.

Above this threshold, the excitation of the quantum system can be

approximately described by the classical diffusive excitation. This
regime of excitation is much more efficient than the direct I-photon

ionization: therefore a new frequency threshold for the photoelectric
eifert appears, which is determined by classical border for frequency,

-u> -C. Actually. there are two different frequency thresholds W0 aid 1.01

-n that strong ionizationr occurs cnl'4 for ,to -:;.,%<o. r Tei latter

threc':,:l,:i . iS due to qu:ntu localizatin f cit lassic .31 chc .

Ite delocalization1 phenomenon explains the partial success oi

la'.ic al c orrputationts in reproduc ing ezperirmiental resLltS on rnicrowa-.e
i~i1:ation11. A4t the Saie time, h':'wever, the 1,:':::-l ization phernmenlion ets
defini te IIinit-; t o the -iil i:ati II of cla:ssi:.l Pr-del, which are diue to



qujintuir localization.

Although a discussion of the two-dim. case was given in sec. 2.2,

the bulk oi the results presented in this paper were related to the
one-dimensional case. While this fact does not certainly affect their
conceptual importance, it enforces some caution when comparing them
with experiments hiterto performed. Indeed, an analysis of the
experiments described in /47/ shows that a three-dimensional theory is
required to model them properly. A different series of experiments/23/
is amenable to a one-dimensional description, but here a static electric
field E collinear with the microwave field was present during the whole

time of the experiment. In order to correctly model these experiments
we ought to add a term zE in our Hamiltonian. The numerical study of

the resulting quantum dynamics presents some technical difficulty,
because it seems to call for a finer description of continuous spectrum
than allowed by the method exploited here. Perhaps recourse to more
sophisticated numerical methods will prove necessary but, in our
opinion, the basic qualitative picture of localization-delocalization will
not change.

Delocalization is also a challenging subject for future theoretical
analysis. This phenomenon has been predicted on the grounds of
semiclassical arguments, which are best suited to make contact with
classical chaotic behaviour. Nevertheless, it should be possible to
understand it in purely quantum terms. A first step in this direction may

be provided by a recent result/49/ that a qualitative change occurs in
the numerically computed quasi-energy eigenfunctions of the one-dim.
problem.

A few concluding remarks are in order concerning the relationship
of results described in this paper to the general themes of quantum
chaos. As we have seen, diffusive excitation and ionization are brought
about in the classical hydrogen atom by the onset of dynamical chaos,
thich is a regime of extreme instability of trajectories of the electron.

A physically relevant question that we have answered above, is whether



the f 114 .IcaI4 ut,.- ale mani1festations oi ,.nuv-.irc d Iiuaticri

ind so on - survive also iri the qua.ntum domain. However. the more

speculative question may be posed, whether also anthing OT the
.onceptual setup Oc classical Chaos - instatbil1ty, irreversbitilt4, and so
on - can be translated in a quanturn context. An illustration was given in
this paper (sec. 3.5) that this is not the case. However similar the
quantum evolution may appear to the classical ( insofar as the population
of levels is concerned) it remains strongly stable, in sharp contrast to
the latter. Therefore, even though classical chaos was shown to be
relevant in predictin5, ie response of a quantum hydrogen atom to an
external microwave field, it must be stressed again that, strictly
speaking, no true chaos is possible In quantuni mecnanics.

We shall now discuss how the results of our investigations modify
the general picture of quantum chaos, as we have sketched it in sec. I.

Indeed, we believe that in the light of these findings of ours some
previously accepted views must now be modified; at the same time, new
developrents appear now possible, which hopefu1111) will shed light on
some as yet scarcely understood phenomena in atomic ph'4sics.

Our study about the possibility of chaotic dMfuslon in quantum
periodically perturbed systems led us to definite predictions on the
existence of a localization-delocalization mechanism. Further theoretical
analysis and experimental work is required in order that this mechanism
may enter the domain of physically ascertained facts, and indeed work is
in progress in both directions. Meanwhile, we wish to stress that our
theoretical views yield considerable clarification in an otherwise very
confused state of affairs. Indeed, judging by current literature and
recent international meetings, scientists working on time-dependent

problems can be roughly devided in two categories. In the first of these
we classify those with a more or less negative attitude in regard of the
possibility that some ch.a':tIL, effects n.ay survive ir Quantum IIech.iicsi
It Includes annly people that at some stage if th eir scientifit work

became acquainted with the kick.ed rotator, or with related models, and
have therefore a dire:t experience of the stubborn resi:tence offeired NJ
this quartum ob' ect to an4 attempt at intr-oducing c1ao'. In it. These

peopie usu..13 dv.chlp a the:retiCr.ih attitide a':':rrdlng tI' whir'hl th-

AL -16



62

quantum suppression of dqnarnical chaos is not lust an artefact of a
queer. highly non-generic model but has deep roots in the very
foundations of quantum Mechanics. Typical representatives of this class
were Hogg and Huberman, who even lelt justitied in dllating the rotor's
stability into a general law, according to which any quantum system
subject to a periodic perturbation would exhibit a strongly recurrent
behaviour, with the only possible exception of non-generic resonant
situations.

Even though this contention of Hogg and Huberman [7 turned out to be
an erroneus one - we were indeed able to prove that the rotor itself can
be nonrecurrent without being resonant 11O] - nevertheless it prompted
important developments. The claimed impossibility that periodically
perturbed quantum systems may follow classical chaotic patterns was
assimilated by Fishman, Grempel and Prange [8] to another more firmly
established quantum impossibility, namely, that a quantum particle in a
disordered static potential may ever escape to infinity. As a matter of
fact, it is well known that such a particle will staq localized, due to a
complicated interference effect. Fishman, Grempel and Prange were able
to establish a formal connection between time dependent problems and
localization problems on disordered lattices, that proved very useful.

It is interesting to note that people in this first class who entered
the H-atom problem, at least initially were rather skeptical about the
possibility that anything like a chaotic ionization may exist in the real
quantum H atom, and considered it almost obvious that some more or
less severe limitations would be imposed by quantum effects on the
chaotic diffusion. (Blumel and Smilanski, [361 Shepelyansky, [11).

A somewhat specular attitude is displayed by workers who enter
Quantum Chaos Just because of their involvment in microwave ionization.
Being aware of the partial success of classical cornputations in
reproducing experimental data, and relying on the correspondence
principle, they hardly realize that a theoretical scheme orgilnally
introduced for the exotic kicked rotor provides elements also for a
quantum theorq of the H atom.

According to our results, both positions at ,a Prtially justified. The
localization- delocaliZation mechanism provides indeed a key to
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Under-tand how quantu m I int tat n ci f1 ': a ,:ha0'E. ,: a r scinet tooe.

leave room for seemingly diffusive exitation processes even in quantum

dynamics. Iuch work is now required in order to give virm ground to our

theoretical results. In the first place, our theory ot the delocalization
phenomenon is essentially a semiclassical one. It would be nice to

understand this phenomenon in purely quantum termns, i.e., by making aS
little use as possible of the underlying classical diffusive picture. In
this way the possibility could be investigated, that a similar quantum

instahility occur- In different situations for which no classical anal og is
available-e.g.. in problems of nuclear physics.

The best approaci towards a purel4 quantum theory of delocalization

isre te ,.pctra I analysi ; :'f tre quasi -energy eigenvalues anl
eigenfunctions. Interesting results in this sense were recently obtained
by Blumel and m:inlilansky [481 who performed a numerical computation of
quasi-energy eigenfunctions for several field parameters and were able

to detect an abrupt change in their shape across some threshold. We are
currently investilatiril the possible coninnect i ,ns between this
phenomenon and delocalization.

Another important question Is how our theory should be modified in

order to apply alo in the realistic case of a 3 dinrrensional atom. A
3-dimernsions nunerically solvable quantum model is thehCn needed,
allowing for :3 careful analysi- of the localization phenriomenon in 3
dimensionas. We have already some theoretical estimates, according to
which the qualitative picture should not be different from the I dim.
case. We are also workinq on a nurnerical model, which is still, however,
In a preliminary stage.

Insofar as our theory justifies the use of classical concepts under
a:ppropriate conditions, it can be considered as a theoretical explanation
of the p-eviotsly detected pherornenon of underthreshold ionization. sn
the ither hand. the '::311 z.tton phenomrencin in the hydrogen .atom in a
rrticrv-w.3Y...' field is a: rele.,ant prediction of ours th3t has not yet ,een
-ub i e,:ted to e::perirnenita tests. fIlore,:ver, act ording toc our viedws, a

n if the '-rrzat, tr a.- ' faunction of mi -crowave frequency should

e:.tc''e .J bil'. sit irply defined peak in the region of lo, frequency I this,
it: 31. -, a . Trw' e:po-Iinrlntl v'rotftc attrn.
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lit order that a detailed 1atr. tory4 chliech 1 c:3iite made, we should

include in our model some minor modifications accounting for certain

details of the actual experimental setup. For example, irl actual
experiments hydrogen atoms are submitted to the combined action ol the
microwave field and of a static electric field. Even though the latter

should not essentially modify the localization-delocalization picture,
including it into the numerical model requires great care and calls for

extreme computer performances.
In drawinq a final balance of a three-years activity, we do not

certainly feel like stating that the major problems in the solution of
which we purported to contribute have been given a final answer

whatever.

Nevertheless, we believe that the world-wide research activity on the
role of chaos in Quantum Mechanics, in which we have been contributinq,

is now entering an almost unexplored realm of microphysics, of great

potential relevance and immediate physical interest.

AL-
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8. Appendixes

Appendix I : Quasi Classical Matrix Elements in Parabolic CLoordinates.

We shall here get the expression for the z coordinate in parabolic
action-angle variables (nl, n2, m, ",,, X, 4)). To this end we introduce
the parabolic coordinates .,'r,,:

/ ; . T,l COSTI

4z v'( Q/sn , Isin.1)

In these coordinates the unperturbed Hanniltoni an takes the forrn:
H= 2'/('+Tl) p ' +2-q/($+T) i + 1/(2$ ln) I. -2..;+TI) (+.2)

The transformation to action-angle variables (n,n ,rn,X .,X,') is
achieved by separation of variables in the Hamilton -Jacobi equation for
which we refer to standard textbooks ( see e.g. 30). Here we just recall
that the generating function of this transformation is found to be:

5(n i,nz,rn,,rt,.t)= [Fp d',' + .[P dT1' -rn' (I.3)

where the canonical momenta P,, P1, P9 are given b/30/:

P, fE/it
F' 1 !rn

t" t.:1 /2 t, t I + t I I' n "'E: r
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7.

Then the angle variables XI, X2

X ,2 dalan1,2z (1.4)

can be obtained by differentiating (1.3) and computing the integrals. The
procedure is greatly simplified by the introduction of the auxiliary
angles XI,Xz defined by

• -2n2 plI sin X+I 2n (nI + ImI/2)
(I.5)

"1 -2n4 j-2 sin X2 + 2n (n2 + Ifm[/2).

where the parameters uIaI 2 are given by:

01,2 = [n1,2 (n - n2,i)/nZ]P/ 2

In this way we get the following result:

-\I- LI cos X, - u2 cos X2 - Xi
(1.6)

- p1 cos Xi -P2 cosXz- X

From (1.5) we get the following expression for z:

Z = 1/2 (t-p) = n2(u> sin X-, - v, sin yI" + n (ni - no) (I.7)

The coordinate z can Lie expanded in a double Fourier series in the
3ngles A ,X: with coefficients z given by:

7 d Y, 2 e IX,
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We now subs ttute (1.7) for 2 in this Integral, 5.nd Charge integratior

vanables to q, / by using (1.6). Thus we find:

in 'n

G n p f'xfdX2 WX1 I2 y d sion X2 -I -iSin N1 e -Vale k2%i2i

+ n i(r -n2) 'Ok, 
00k, (1.6)

where [':It~, ,.= . ,. t l. ) 1 - - sir X, U sin X2 is the

Jacobian determinant for the transformation (XI, X2,) -> (Xi, 2-

Evaluating the double integral in U1.P yields formulas (Id) in the text.

Appendix II: 5olution of the Fokker-F'lnck equation.

In order Wc sc We Eq. (4) wit the boundary c.onii ti on Of n :n :F0

we shall first perforrn some change of variables. First of all, putting

t E'-2z.t _ , y:n/n0 , the Foker-Planck equation tales the form:

f( t.--. Mg,/y (y3 af/Ky)

Now lets change again variables to z y'' 2 and let'rs introduce a new
function q(z) according to f:22 g. This function g must then satisfy:

,i.:T , (1/4) -g.'K z2  + (1 /4),ig I' - ) Q

ni' it- : L I : l trrl , , " r il .I) 1 2 . .'.IJE.. .3 U 1 . tnie ?']The

.'4oz I/) jg': (4/:- An" . -b zY).
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, (1 /x) O, qx - ':1 4"x2) g -- (1is) g(x,O) (1. 1)

By the same changes of variables we find that, in order that f satisfies

the boundary condition at/an Im =), g must satisfy:

=j -(21x) g (x s) , where x-= 2(s no/n)1 ' 2  (11.2)

The general inteqral of eq. (I.L) can be written as

g = A l_,(x) + 8 K,(x) +

where 12, K2 are.... , A .B are numerical constants and 5 is a particular
integral that can be determined e. g. by Lagrange's method:

A

g =I_(x) [A - (Ils) J x'g(x',u) K_(x')dx' +

A
*1 (11.3)

+ K25(x) [B + (I/s) x'g(x'.O) 15x')dx'

The constants AB can then te chosen so that the boundary condition

(1.2) is satisfied. Indeed, upon substituting (11.3) into (11.2) we get:

g(:,.s) =[ K C(x-) I 2(x)/1 (x-'] (1i/s).fIg(x',O)Izx')x'dx' +

':' (II.4)

+ I .(: ') (1I/':,) j q(;&.t)FI>:."J'dx'+ h,-(,,) (1/;), f g":-<.o)1, (x')x'dx'

'"'-I

jine Irru .r,ig Ku-rnl) Y'( mas:t ':( -_'e q&A.'.,l ; theP iorm .'v£s/."-- -I)

Then the asyrnptotic-: of ,11.41 for s - ano fixed q has the form:

" 4' <( '4: ' 1 iq' ] '" 14, 1- " .< " h

I I I i III I I I it Il II
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+ exp[ .,x/2.s-i,

whence it tollows

f('ys) i/(2 y1'34 (s) lexp[21/s( I+ I /iy-21,fDl-

+exp[21s( I / jiy- 1)]

Eq. (5a) in the text easll follclws trom the last lorrrul3.

Appendix II1: Estimate for the Delocalization Border.

Let's evaluate the 2nd moment of the di stribution over the levcls:
I1 < (n) -> <n-Kn> )>. From the diffusion equation we get

approximately

d/dz <(An)-> :[1 --D>: anoZ(n/n0 )> > '.11.1)

where a= 2 W 0 0
- 
7 

. The equation for the Ist moment gives

dsn>/dt = (3 a no.12) <(nlno 2 > (111.2)

In order to solve (1I.1) and (111.2) we will use a rough approximation,
namel, .,;e will substitute for n its rnean value <i:. Doing so, and
pertfarr i the inteir,3tion, we obt,3n

Ari)h' = ni2 [( 1 -Tam/2<I-- I1T 2

T I I o ii 11 a t i i t t: i - .1 At i co 7 q n -1 .. ' P " 1. u .5ti oi i r
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c. the least root of which determines the localization lenqth 1:

(noJ/3) [(I -3za/2) -2 - I1 'c2/lxS (111.3)

1 t /l(x

A straigthforward manipulation gives then formulas (13), (14).

Appendix IV: A Method for computing Hypergeometric functions.

The numerical computations o matrix elements in (32) ? presents

some technical difficulty since a direct expansion of hypergeometric
functions in series of powers of -4nno/(n-n) 2 doesn't give correct
values of Bn3 for n-s - 100 due strong cancellations of different terms

and finite computer precision. Therefore in order to compute the
hypergeometric function F we used a different method based on the
recursion formulas between values of F for three consecutive values s-1,

s, s+l ( see, e.g./39/). The method is essentially as follows:
We take two values of F for s=0, s=1 and then we recurrently

determine all F up to s=n8 - n . After that we take two arbitrary values

for Frn and Fm'1 for s =m and szm+1 where m >>s, was chosen (for

example m 2, S max ) and recurrently determined values of F for n.- 10<

s < m . These latter values of F differ from the actual ones onli, by a

numerical factor cF. The value of this constant Yyas obtained by

comparison with F computed for s< n. For different values s< n. the

constant cF was obtained with a precision - I0 " I O. After taking into

aCcounlt this con-tanlt factor we qot precise values of F for ,<s< ,

.h ici didn't changP upon ch3nggin the arbitrary values F.n, Fn,1

~ ~ _i
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